Loading…

Quantum information of the modified Mobius squared plus Eckart potential

The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐...

Full description

Saved in:
Bibliographic Details
Published in:International journal of quantum chemistry 2023-03, Vol.123 (6), p.n/a
Main Authors: Njoku, Ifeanyi J., Onyeocha, Emeka, Onyenegecha, Chibueze P., Onuoha, Modestus, Egeonu, Eugene K., Nwaokafor, Placid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3
cites cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3
container_end_page n/a
container_issue 6
container_start_page
container_title International journal of quantum chemistry
container_volume 123
creator Njoku, Ifeanyi J.
Onyeocha, Emeka
Onyenegecha, Chibueze P.
Onuoha, Modestus
Egeonu, Eugene K.
Nwaokafor, Placid
description The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states. The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.
doi_str_mv 10.1002/qua.27050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2772903563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772903563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKsH_8GCJw_bTjbdzPZYSm2FihQseAvZNMHU3c022UX6742uV0_DY755w3uE3FOYUIBseurlJEPI4YKMKMwxnXH6fklGcQcpciiuyU0IRwDgjOOIbHa9bLq-TmxjnK9lZ12TOJN0Hzqp3cEaqw_JiyttH5IQzX2UbRXFSn1K3yWt63TTWVndkisjq6Dv_uaY7J9Wb8tNun1dPy8X21Rlc4RU0aLkKLXCQoIEjgfFSsNnoBGpgTKXhWGUKSlLVCgV5cilQV5w1KzIFRuTh8G39e7U69CJo-t9E1-KDDGbA8s5i9TjQCnvQvDaiNbbWvqzoCB-ihIxi_gtKrLTgf2ylT7_D4rdfjFcfAMxPmpj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772903563</pqid></control><display><type>article</type><title>Quantum information of the modified Mobius squared plus Eckart potential</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</creator><creatorcontrib>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</creatorcontrib><description>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states. The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27050</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chemistry ; Complexity ; Eigenvalues ; Entropy (Information theory) ; Fisher information ; Inequality ; Lower bounds ; Momentum ; Physical chemistry ; quantum information ; Quantum phenomena ; Quantum physics ; Schrodinger equation ; Shannon entropy ; squeezed state ; Squeezed states (quantum theory) ; Uncertainty principles ; Wave functions</subject><ispartof>International journal of quantum chemistry, 2023-03, Vol.123 (6), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</citedby><cites>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</cites><orcidid>0000-0001-5200-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Njoku, Ifeanyi J.</creatorcontrib><creatorcontrib>Onyeocha, Emeka</creatorcontrib><creatorcontrib>Onyenegecha, Chibueze P.</creatorcontrib><creatorcontrib>Onuoha, Modestus</creatorcontrib><creatorcontrib>Egeonu, Eugene K.</creatorcontrib><creatorcontrib>Nwaokafor, Placid</creatorcontrib><title>Quantum information of the modified Mobius squared plus Eckart potential</title><title>International journal of quantum chemistry</title><description>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states. The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</description><subject>Chemistry</subject><subject>Complexity</subject><subject>Eigenvalues</subject><subject>Entropy (Information theory)</subject><subject>Fisher information</subject><subject>Inequality</subject><subject>Lower bounds</subject><subject>Momentum</subject><subject>Physical chemistry</subject><subject>quantum information</subject><subject>Quantum phenomena</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Shannon entropy</subject><subject>squeezed state</subject><subject>Squeezed states (quantum theory)</subject><subject>Uncertainty principles</subject><subject>Wave functions</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKsH_8GCJw_bTjbdzPZYSm2FihQseAvZNMHU3c022UX6742uV0_DY755w3uE3FOYUIBseurlJEPI4YKMKMwxnXH6fklGcQcpciiuyU0IRwDgjOOIbHa9bLq-TmxjnK9lZ12TOJN0Hzqp3cEaqw_JiyttH5IQzX2UbRXFSn1K3yWt63TTWVndkisjq6Dv_uaY7J9Wb8tNun1dPy8X21Rlc4RU0aLkKLXCQoIEjgfFSsNnoBGpgTKXhWGUKSlLVCgV5cilQV5w1KzIFRuTh8G39e7U69CJo-t9E1-KDDGbA8s5i9TjQCnvQvDaiNbbWvqzoCB-ihIxi_gtKrLTgf2ylT7_D4rdfjFcfAMxPmpj</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Njoku, Ifeanyi J.</creator><creator>Onyeocha, Emeka</creator><creator>Onyenegecha, Chibueze P.</creator><creator>Onuoha, Modestus</creator><creator>Egeonu, Eugene K.</creator><creator>Nwaokafor, Placid</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5200-7528</orcidid></search><sort><creationdate>20230315</creationdate><title>Quantum information of the modified Mobius squared plus Eckart potential</title><author>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Complexity</topic><topic>Eigenvalues</topic><topic>Entropy (Information theory)</topic><topic>Fisher information</topic><topic>Inequality</topic><topic>Lower bounds</topic><topic>Momentum</topic><topic>Physical chemistry</topic><topic>quantum information</topic><topic>Quantum phenomena</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Shannon entropy</topic><topic>squeezed state</topic><topic>Squeezed states (quantum theory)</topic><topic>Uncertainty principles</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Njoku, Ifeanyi J.</creatorcontrib><creatorcontrib>Onyeocha, Emeka</creatorcontrib><creatorcontrib>Onyenegecha, Chibueze P.</creatorcontrib><creatorcontrib>Onuoha, Modestus</creatorcontrib><creatorcontrib>Egeonu, Eugene K.</creatorcontrib><creatorcontrib>Nwaokafor, Placid</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Njoku, Ifeanyi J.</au><au>Onyeocha, Emeka</au><au>Onyenegecha, Chibueze P.</au><au>Onuoha, Modestus</au><au>Egeonu, Eugene K.</au><au>Nwaokafor, Placid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum information of the modified Mobius squared plus Eckart potential</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>123</volume><issue>6</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states. The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.27050</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5200-7528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2023-03, Vol.123 (6), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2772903563
source Wiley-Blackwell Read & Publish Collection
subjects Chemistry
Complexity
Eigenvalues
Entropy (Information theory)
Fisher information
Inequality
Lower bounds
Momentum
Physical chemistry
quantum information
Quantum phenomena
Quantum physics
Schrodinger equation
Shannon entropy
squeezed state
Squeezed states (quantum theory)
Uncertainty principles
Wave functions
title Quantum information of the modified Mobius squared plus Eckart potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20information%20of%20the%20modified%20Mobius%20squared%20plus%20Eckart%20potential&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Njoku,%20Ifeanyi%20J.&rft.date=2023-03-15&rft.volume=123&rft.issue=6&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27050&rft_dat=%3Cproquest_cross%3E2772903563%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772903563&rft_id=info:pmid/&rfr_iscdi=true