Loading…
Quantum information of the modified Mobius squared plus Eckart potential
The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐...
Saved in:
Published in: | International journal of quantum chemistry 2023-03, Vol.123 (6), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | International journal of quantum chemistry |
container_volume | 123 |
creator | Njoku, Ifeanyi J. Onyeocha, Emeka Onyenegecha, Chibueze P. Onuoha, Modestus Egeonu, Eugene K. Nwaokafor, Placid |
description | The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states.
The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases. |
doi_str_mv | 10.1002/qua.27050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2772903563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2772903563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKsH_8GCJw_bTjbdzPZYSm2FihQseAvZNMHU3c022UX6742uV0_DY755w3uE3FOYUIBseurlJEPI4YKMKMwxnXH6fklGcQcpciiuyU0IRwDgjOOIbHa9bLq-TmxjnK9lZ12TOJN0Hzqp3cEaqw_JiyttH5IQzX2UbRXFSn1K3yWt63TTWVndkisjq6Dv_uaY7J9Wb8tNun1dPy8X21Rlc4RU0aLkKLXCQoIEjgfFSsNnoBGpgTKXhWGUKSlLVCgV5cilQV5w1KzIFRuTh8G39e7U69CJo-t9E1-KDDGbA8s5i9TjQCnvQvDaiNbbWvqzoCB-ihIxi_gtKrLTgf2ylT7_D4rdfjFcfAMxPmpj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772903563</pqid></control><display><type>article</type><title>Quantum information of the modified Mobius squared plus Eckart potential</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</creator><creatorcontrib>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</creatorcontrib><description>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states.
The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27050</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Chemistry ; Complexity ; Eigenvalues ; Entropy (Information theory) ; Fisher information ; Inequality ; Lower bounds ; Momentum ; Physical chemistry ; quantum information ; Quantum phenomena ; Quantum physics ; Schrodinger equation ; Shannon entropy ; squeezed state ; Squeezed states (quantum theory) ; Uncertainty principles ; Wave functions</subject><ispartof>International journal of quantum chemistry, 2023-03, Vol.123 (6), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</citedby><cites>FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</cites><orcidid>0000-0001-5200-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Njoku, Ifeanyi J.</creatorcontrib><creatorcontrib>Onyeocha, Emeka</creatorcontrib><creatorcontrib>Onyenegecha, Chibueze P.</creatorcontrib><creatorcontrib>Onuoha, Modestus</creatorcontrib><creatorcontrib>Egeonu, Eugene K.</creatorcontrib><creatorcontrib>Nwaokafor, Placid</creatorcontrib><title>Quantum information of the modified Mobius squared plus Eckart potential</title><title>International journal of quantum chemistry</title><description>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states.
The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</description><subject>Chemistry</subject><subject>Complexity</subject><subject>Eigenvalues</subject><subject>Entropy (Information theory)</subject><subject>Fisher information</subject><subject>Inequality</subject><subject>Lower bounds</subject><subject>Momentum</subject><subject>Physical chemistry</subject><subject>quantum information</subject><subject>Quantum phenomena</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Shannon entropy</subject><subject>squeezed state</subject><subject>Squeezed states (quantum theory)</subject><subject>Uncertainty principles</subject><subject>Wave functions</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKsH_8GCJw_bTjbdzPZYSm2FihQseAvZNMHU3c022UX6742uV0_DY755w3uE3FOYUIBseurlJEPI4YKMKMwxnXH6fklGcQcpciiuyU0IRwDgjOOIbHa9bLq-TmxjnK9lZ12TOJN0Hzqp3cEaqw_JiyttH5IQzX2UbRXFSn1K3yWt63TTWVndkisjq6Dv_uaY7J9Wb8tNun1dPy8X21Rlc4RU0aLkKLXCQoIEjgfFSsNnoBGpgTKXhWGUKSlLVCgV5cilQV5w1KzIFRuTh8G39e7U69CJo-t9E1-KDDGbA8s5i9TjQCnvQvDaiNbbWvqzoCB-ihIxi_gtKrLTgf2ylT7_D4rdfjFcfAMxPmpj</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Njoku, Ifeanyi J.</creator><creator>Onyeocha, Emeka</creator><creator>Onyenegecha, Chibueze P.</creator><creator>Onuoha, Modestus</creator><creator>Egeonu, Eugene K.</creator><creator>Nwaokafor, Placid</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5200-7528</orcidid></search><sort><creationdate>20230315</creationdate><title>Quantum information of the modified Mobius squared plus Eckart potential</title><author>Njoku, Ifeanyi J. ; Onyeocha, Emeka ; Onyenegecha, Chibueze P. ; Onuoha, Modestus ; Egeonu, Eugene K. ; Nwaokafor, Placid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Complexity</topic><topic>Eigenvalues</topic><topic>Entropy (Information theory)</topic><topic>Fisher information</topic><topic>Inequality</topic><topic>Lower bounds</topic><topic>Momentum</topic><topic>Physical chemistry</topic><topic>quantum information</topic><topic>Quantum phenomena</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Shannon entropy</topic><topic>squeezed state</topic><topic>Squeezed states (quantum theory)</topic><topic>Uncertainty principles</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Njoku, Ifeanyi J.</creatorcontrib><creatorcontrib>Onyeocha, Emeka</creatorcontrib><creatorcontrib>Onyenegecha, Chibueze P.</creatorcontrib><creatorcontrib>Onuoha, Modestus</creatorcontrib><creatorcontrib>Egeonu, Eugene K.</creatorcontrib><creatorcontrib>Nwaokafor, Placid</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Njoku, Ifeanyi J.</au><au>Onyeocha, Emeka</au><au>Onyenegecha, Chibueze P.</au><au>Onuoha, Modestus</au><au>Egeonu, Eugene K.</au><au>Nwaokafor, Placid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum information of the modified Mobius squared plus Eckart potential</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>123</volume><issue>6</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>The quantum information measures and complexity of the modified Mobius squared plus Eckart (MMSE) potential are presented in this paper. First, the energy eigenvalues and wave function of the system are obtained from the approximate solutions of the Schrödinger equation via the parametric Nikiforov‐Uvarov (pNU) method. Using the wave function, the Shannon entropy, Onicescu information energy and Fisher information of the system are examined for two low‐lying states along with the modified Lopez‐Ruiz‐Mancini‐Calbet (LMC) complexity and Heisenberg uncertainty relation. The results of the work point to the fact that the radial (momentum) probability density peak shifts to lower (higher) values with increase in the screening parameter. Furthermore, the Bialynicki‐Birula and Mycielski (BBM) inequality, the lower bound of the modified LMC complexity, the Fisher information sum inequality and the Stam‐Cramer‐Rao inequality are verified for the system. Also, the Heisenberg uncertainty principle is verified for the MMSE potential and the existence of squeezed states is observed for both position and momentum states.
The radial probability density peak of the system for the ground state shifts to lower values as the screening parameter increases, while the momentum space probability density function has a Gaussian shape and its peak shifts to higher values as the screening parameter increases.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/qua.27050</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5200-7528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2023-03, Vol.123 (6), p.n/a |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_2772903563 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemistry Complexity Eigenvalues Entropy (Information theory) Fisher information Inequality Lower bounds Momentum Physical chemistry quantum information Quantum phenomena Quantum physics Schrodinger equation Shannon entropy squeezed state Squeezed states (quantum theory) Uncertainty principles Wave functions |
title | Quantum information of the modified Mobius squared plus Eckart potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20information%20of%20the%20modified%20Mobius%20squared%20plus%20Eckart%20potential&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Njoku,%20Ifeanyi%20J.&rft.date=2023-03-15&rft.volume=123&rft.issue=6&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27050&rft_dat=%3Cproquest_cross%3E2772903563%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2970-c18b67aec78a0a067dc3bf640e771f0b5a8f313caab7c7ac1676af76867e385c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772903563&rft_id=info:pmid/&rfr_iscdi=true |