Loading…
High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance
Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are eith...
Saved in:
Published in: | Journal of microelectromechanical systems 2023-02, Vol.32 (1), p.91-102 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13 |
container_end_page | 102 |
container_issue | 1 |
container_start_page | 91 |
container_title | Journal of microelectromechanical systems |
container_volume | 32 |
creator | D'Agati, Michael J. Sofronici, Sydney Huo, Yujia Finkel, Peter Bussmann, Konrad McLaughlin, Keith L. Wheeler, Brad Jones, Nicholas J. Mion, Thomas Staruch, Margo Olsson, Roy H. |
description | Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/ \surd Hz and 2.72nT/ \surd Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/ \surd Hz when sensing an AC magnetic field at the device resonance. [2022-0158] |
doi_str_mv | 10.1109/JMEMS.2022.3226150 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2773450108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9990920</ieee_id><sourcerecordid>2773450108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExH9A3pp4tXFtttu26MhIBo2fqDnTdmdYgm02HYP_nsXIZ7mzeR5Z5Iny64JHhGC1f1zNakWI4opHRWUloTjk2xAFCM5Jlye9hlzkQvCxXl2EeMaY8KYLAeZm9nVV_6GprpJPtyhqtskayAEbxv0DtE77RKq9MpB6jdTC5sWLcBFHyLSrkVzu7UpIu_QIgVtHap82210ggNm3Qq9QjA-bLVr4DI7M3oT4eo4h9nndPIxnuXzl8en8cM8b6jiKVeMC2oEGChFIRSlUrCyYZxLUCWnxCyNZKBIobWWikuClyVrpGpbJbkBUgyz28PdXfDfHcRUr30XXP-ypkIUjGOCZU_RA9UEH2MAU--C3erwUxNc773Wf17rvdf66LUv3RxKFgD-C0oprCgufgELQnO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773450108</pqid></control><display><type>article</type><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><source>IEEE Electronic Library (IEL) Journals</source><creator>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</creator><creatorcontrib>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</creatorcontrib><description><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2022.3226150</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum nitride ; Electric contacts ; iron cobalt ; Low noise ; Magnetic fields ; Magnetic resonance ; magnetic sensing ; Magnetic sensors ; magnetometer ; Magnetometers ; Magnetostriction ; MEMS ; Modulation ; Multiferroic materials ; multiferroics ; Noise sensitivity ; Power consumption ; Power management ; Q factors ; Resonance ; Robot control ; Room temperature ; Sensitivity ; Sensors ; Strain ; strain modulation</subject><ispartof>Journal of microelectromechanical systems, 2023-02, Vol.32 (1), p.91-102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</citedby><cites>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</cites><orcidid>0000-0002-3776-7868 ; 0000-0003-3088-2553 ; 0000-0001-5501-4635 ; 0000-0003-2611-2871 ; 0000-0002-8007-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9990920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>D'Agati, Michael J.</creatorcontrib><creatorcontrib>Sofronici, Sydney</creatorcontrib><creatorcontrib>Huo, Yujia</creatorcontrib><creatorcontrib>Finkel, Peter</creatorcontrib><creatorcontrib>Bussmann, Konrad</creatorcontrib><creatorcontrib>McLaughlin, Keith L.</creatorcontrib><creatorcontrib>Wheeler, Brad</creatorcontrib><creatorcontrib>Jones, Nicholas J.</creatorcontrib><creatorcontrib>Mion, Thomas</creatorcontrib><creatorcontrib>Staruch, Margo</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></description><subject>Aluminum nitride</subject><subject>Electric contacts</subject><subject>iron cobalt</subject><subject>Low noise</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>magnetic sensing</subject><subject>Magnetic sensors</subject><subject>magnetometer</subject><subject>Magnetometers</subject><subject>Magnetostriction</subject><subject>MEMS</subject><subject>Modulation</subject><subject>Multiferroic materials</subject><subject>multiferroics</subject><subject>Noise sensitivity</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Q factors</subject><subject>Resonance</subject><subject>Robot control</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain</subject><subject>strain modulation</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhjdGExH9A3pp4tXFtttu26MhIBo2fqDnTdmdYgm02HYP_nsXIZ7mzeR5Z5Iny64JHhGC1f1zNakWI4opHRWUloTjk2xAFCM5Jlye9hlzkQvCxXl2EeMaY8KYLAeZm9nVV_6GprpJPtyhqtskayAEbxv0DtE77RKq9MpB6jdTC5sWLcBFHyLSrkVzu7UpIu_QIgVtHap82210ggNm3Qq9QjA-bLVr4DI7M3oT4eo4h9nndPIxnuXzl8en8cM8b6jiKVeMC2oEGChFIRSlUrCyYZxLUCWnxCyNZKBIobWWikuClyVrpGpbJbkBUgyz28PdXfDfHcRUr30XXP-ypkIUjGOCZU_RA9UEH2MAU--C3erwUxNc773Wf17rvdf66LUv3RxKFgD-C0oprCgufgELQnO7</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>D'Agati, Michael J.</creator><creator>Sofronici, Sydney</creator><creator>Huo, Yujia</creator><creator>Finkel, Peter</creator><creator>Bussmann, Konrad</creator><creator>McLaughlin, Keith L.</creator><creator>Wheeler, Brad</creator><creator>Jones, Nicholas J.</creator><creator>Mion, Thomas</creator><creator>Staruch, Margo</creator><creator>Olsson, Roy H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3776-7868</orcidid><orcidid>https://orcid.org/0000-0003-3088-2553</orcidid><orcidid>https://orcid.org/0000-0001-5501-4635</orcidid><orcidid>https://orcid.org/0000-0003-2611-2871</orcidid><orcidid>https://orcid.org/0000-0002-8007-5082</orcidid></search><sort><creationdate>20230201</creationdate><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><author>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum nitride</topic><topic>Electric contacts</topic><topic>iron cobalt</topic><topic>Low noise</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>magnetic sensing</topic><topic>Magnetic sensors</topic><topic>magnetometer</topic><topic>Magnetometers</topic><topic>Magnetostriction</topic><topic>MEMS</topic><topic>Modulation</topic><topic>Multiferroic materials</topic><topic>multiferroics</topic><topic>Noise sensitivity</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Q factors</topic><topic>Resonance</topic><topic>Robot control</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain</topic><topic>strain modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Agati, Michael J.</creatorcontrib><creatorcontrib>Sofronici, Sydney</creatorcontrib><creatorcontrib>Huo, Yujia</creatorcontrib><creatorcontrib>Finkel, Peter</creatorcontrib><creatorcontrib>Bussmann, Konrad</creatorcontrib><creatorcontrib>McLaughlin, Keith L.</creatorcontrib><creatorcontrib>Wheeler, Brad</creatorcontrib><creatorcontrib>Jones, Nicholas J.</creatorcontrib><creatorcontrib>Mion, Thomas</creatorcontrib><creatorcontrib>Staruch, Margo</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Agati, Michael J.</au><au>Sofronici, Sydney</au><au>Huo, Yujia</au><au>Finkel, Peter</au><au>Bussmann, Konrad</au><au>McLaughlin, Keith L.</au><au>Wheeler, Brad</au><au>Jones, Nicholas J.</au><au>Mion, Thomas</au><au>Staruch, Margo</au><au>Olsson, Roy H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>91</spage><epage>102</epage><pages>91-102</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2022.3226150</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3776-7868</orcidid><orcidid>https://orcid.org/0000-0003-3088-2553</orcidid><orcidid>https://orcid.org/0000-0001-5501-4635</orcidid><orcidid>https://orcid.org/0000-0003-2611-2871</orcidid><orcidid>https://orcid.org/0000-0002-8007-5082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2023-02, Vol.32 (1), p.91-102 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_journals_2773450108 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aluminum nitride Electric contacts iron cobalt Low noise Magnetic fields Magnetic resonance magnetic sensing Magnetic sensors magnetometer Magnetometers Magnetostriction MEMS Modulation Multiferroic materials multiferroics Noise sensitivity Power consumption Power management Q factors Resonance Robot control Room temperature Sensitivity Sensors Strain strain modulation |
title | High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Q%20Factor,%20Multiferroic%20Resonant%20Magnetic%20Field%20Sensors%20and%20Limits%20on%20Strain%20Modulated%20Sensing%20Performance&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=D'Agati,%20Michael%20J.&rft.date=2023-02-01&rft.volume=32&rft.issue=1&rft.spage=91&rft.epage=102&rft.pages=91-102&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2022.3226150&rft_dat=%3Cproquest_ieee_%3E2773450108%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773450108&rft_id=info:pmid/&rft_ieee_id=9990920&rfr_iscdi=true |