Loading…

High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance

Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are eith...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2023-02, Vol.32 (1), p.91-102
Main Authors: D'Agati, Michael J., Sofronici, Sydney, Huo, Yujia, Finkel, Peter, Bussmann, Konrad, McLaughlin, Keith L., Wheeler, Brad, Jones, Nicholas J., Mion, Thomas, Staruch, Margo, Olsson, Roy H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13
cites cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13
container_end_page 102
container_issue 1
container_start_page 91
container_title Journal of microelectromechanical systems
container_volume 32
creator D'Agati, Michael J.
Sofronici, Sydney
Huo, Yujia
Finkel, Peter
Bussmann, Konrad
McLaughlin, Keith L.
Wheeler, Brad
Jones, Nicholas J.
Mion, Thomas
Staruch, Margo
Olsson, Roy H.
description Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/ \surd Hz and 2.72nT/ \surd Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/ \surd Hz when sensing an AC magnetic field at the device resonance. [2022-0158]
doi_str_mv 10.1109/JMEMS.2022.3226150
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2773450108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9990920</ieee_id><sourcerecordid>2773450108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExH9A3pp4tXFtttu26MhIBo2fqDnTdmdYgm02HYP_nsXIZ7mzeR5Z5Iny64JHhGC1f1zNakWI4opHRWUloTjk2xAFCM5Jlye9hlzkQvCxXl2EeMaY8KYLAeZm9nVV_6GprpJPtyhqtskayAEbxv0DtE77RKq9MpB6jdTC5sWLcBFHyLSrkVzu7UpIu_QIgVtHap82210ggNm3Qq9QjA-bLVr4DI7M3oT4eo4h9nndPIxnuXzl8en8cM8b6jiKVeMC2oEGChFIRSlUrCyYZxLUCWnxCyNZKBIobWWikuClyVrpGpbJbkBUgyz28PdXfDfHcRUr30XXP-ypkIUjGOCZU_RA9UEH2MAU--C3erwUxNc773Wf17rvdf66LUv3RxKFgD-C0oprCgufgELQnO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773450108</pqid></control><display><type>article</type><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><source>IEEE Electronic Library (IEL) Journals</source><creator>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</creator><creatorcontrib>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</creatorcontrib><description><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2022.3226150</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum nitride ; Electric contacts ; iron cobalt ; Low noise ; Magnetic fields ; Magnetic resonance ; magnetic sensing ; Magnetic sensors ; magnetometer ; Magnetometers ; Magnetostriction ; MEMS ; Modulation ; Multiferroic materials ; multiferroics ; Noise sensitivity ; Power consumption ; Power management ; Q factors ; Resonance ; Robot control ; Room temperature ; Sensitivity ; Sensors ; Strain ; strain modulation</subject><ispartof>Journal of microelectromechanical systems, 2023-02, Vol.32 (1), p.91-102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</citedby><cites>FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</cites><orcidid>0000-0002-3776-7868 ; 0000-0003-3088-2553 ; 0000-0001-5501-4635 ; 0000-0003-2611-2871 ; 0000-0002-8007-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9990920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>D'Agati, Michael J.</creatorcontrib><creatorcontrib>Sofronici, Sydney</creatorcontrib><creatorcontrib>Huo, Yujia</creatorcontrib><creatorcontrib>Finkel, Peter</creatorcontrib><creatorcontrib>Bussmann, Konrad</creatorcontrib><creatorcontrib>McLaughlin, Keith L.</creatorcontrib><creatorcontrib>Wheeler, Brad</creatorcontrib><creatorcontrib>Jones, Nicholas J.</creatorcontrib><creatorcontrib>Mion, Thomas</creatorcontrib><creatorcontrib>Staruch, Margo</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></description><subject>Aluminum nitride</subject><subject>Electric contacts</subject><subject>iron cobalt</subject><subject>Low noise</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>magnetic sensing</subject><subject>Magnetic sensors</subject><subject>magnetometer</subject><subject>Magnetometers</subject><subject>Magnetostriction</subject><subject>MEMS</subject><subject>Modulation</subject><subject>Multiferroic materials</subject><subject>multiferroics</subject><subject>Noise sensitivity</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Q factors</subject><subject>Resonance</subject><subject>Robot control</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain</subject><subject>strain modulation</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhjdGExH9A3pp4tXFtttu26MhIBo2fqDnTdmdYgm02HYP_nsXIZ7mzeR5Z5Iny64JHhGC1f1zNakWI4opHRWUloTjk2xAFCM5Jlye9hlzkQvCxXl2EeMaY8KYLAeZm9nVV_6GprpJPtyhqtskayAEbxv0DtE77RKq9MpB6jdTC5sWLcBFHyLSrkVzu7UpIu_QIgVtHap82210ggNm3Qq9QjA-bLVr4DI7M3oT4eo4h9nndPIxnuXzl8en8cM8b6jiKVeMC2oEGChFIRSlUrCyYZxLUCWnxCyNZKBIobWWikuClyVrpGpbJbkBUgyz28PdXfDfHcRUr30XXP-ypkIUjGOCZU_RA9UEH2MAU--C3erwUxNc773Wf17rvdf66LUv3RxKFgD-C0oprCgufgELQnO7</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>D'Agati, Michael J.</creator><creator>Sofronici, Sydney</creator><creator>Huo, Yujia</creator><creator>Finkel, Peter</creator><creator>Bussmann, Konrad</creator><creator>McLaughlin, Keith L.</creator><creator>Wheeler, Brad</creator><creator>Jones, Nicholas J.</creator><creator>Mion, Thomas</creator><creator>Staruch, Margo</creator><creator>Olsson, Roy H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3776-7868</orcidid><orcidid>https://orcid.org/0000-0003-3088-2553</orcidid><orcidid>https://orcid.org/0000-0001-5501-4635</orcidid><orcidid>https://orcid.org/0000-0003-2611-2871</orcidid><orcidid>https://orcid.org/0000-0002-8007-5082</orcidid></search><sort><creationdate>20230201</creationdate><title>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</title><author>D'Agati, Michael J. ; Sofronici, Sydney ; Huo, Yujia ; Finkel, Peter ; Bussmann, Konrad ; McLaughlin, Keith L. ; Wheeler, Brad ; Jones, Nicholas J. ; Mion, Thomas ; Staruch, Margo ; Olsson, Roy H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum nitride</topic><topic>Electric contacts</topic><topic>iron cobalt</topic><topic>Low noise</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>magnetic sensing</topic><topic>Magnetic sensors</topic><topic>magnetometer</topic><topic>Magnetometers</topic><topic>Magnetostriction</topic><topic>MEMS</topic><topic>Modulation</topic><topic>Multiferroic materials</topic><topic>multiferroics</topic><topic>Noise sensitivity</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Q factors</topic><topic>Resonance</topic><topic>Robot control</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain</topic><topic>strain modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Agati, Michael J.</creatorcontrib><creatorcontrib>Sofronici, Sydney</creatorcontrib><creatorcontrib>Huo, Yujia</creatorcontrib><creatorcontrib>Finkel, Peter</creatorcontrib><creatorcontrib>Bussmann, Konrad</creatorcontrib><creatorcontrib>McLaughlin, Keith L.</creatorcontrib><creatorcontrib>Wheeler, Brad</creatorcontrib><creatorcontrib>Jones, Nicholas J.</creatorcontrib><creatorcontrib>Mion, Thomas</creatorcontrib><creatorcontrib>Staruch, Margo</creatorcontrib><creatorcontrib>Olsson, Roy H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Agati, Michael J.</au><au>Sofronici, Sydney</au><au>Huo, Yujia</au><au>Finkel, Peter</au><au>Bussmann, Konrad</au><au>McLaughlin, Keith L.</au><au>Wheeler, Brad</au><au>Jones, Nicholas J.</au><au>Mion, Thomas</au><au>Staruch, Margo</au><au>Olsson, Roy H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>91</spage><epage>102</epage><pages>91-102</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz and 2.72nT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/<inline-formula> <tex-math notation="LaTeX">\surd </tex-math></inline-formula>Hz when sensing an AC magnetic field at the device resonance. [2022-0158]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2022.3226150</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3776-7868</orcidid><orcidid>https://orcid.org/0000-0003-3088-2553</orcidid><orcidid>https://orcid.org/0000-0001-5501-4635</orcidid><orcidid>https://orcid.org/0000-0003-2611-2871</orcidid><orcidid>https://orcid.org/0000-0002-8007-5082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2023-02, Vol.32 (1), p.91-102
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_2773450108
source IEEE Electronic Library (IEL) Journals
subjects Aluminum nitride
Electric contacts
iron cobalt
Low noise
Magnetic fields
Magnetic resonance
magnetic sensing
Magnetic sensors
magnetometer
Magnetometers
Magnetostriction
MEMS
Modulation
Multiferroic materials
multiferroics
Noise sensitivity
Power consumption
Power management
Q factors
Resonance
Robot control
Room temperature
Sensitivity
Sensors
Strain
strain modulation
title High-Q Factor, Multiferroic Resonant Magnetic Field Sensors and Limits on Strain Modulated Sensing Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Q%20Factor,%20Multiferroic%20Resonant%20Magnetic%20Field%20Sensors%20and%20Limits%20on%20Strain%20Modulated%20Sensing%20Performance&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=D'Agati,%20Michael%20J.&rft.date=2023-02-01&rft.volume=32&rft.issue=1&rft.spage=91&rft.epage=102&rft.pages=91-102&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2022.3226150&rft_dat=%3Cproquest_ieee_%3E2773450108%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-94572f7efe67379228746c4558e96521fbf84e913aaa895810b64c89dd985fe13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773450108&rft_id=info:pmid/&rft_ieee_id=9990920&rfr_iscdi=true