Loading…
Domain Adaptation via Rebalanced Sub-domain Alignment
Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Yiling Dong, Juncheng Jiang, Ziyang Aloui, Ahmed Li, Keyu Klein, Hunter Tarokh, Vahid Carlson, David |
description | Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2774003926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774003926</sourcerecordid><originalsourceid>FETCH-proquest_journals_27740039263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcnPTczMU3BMSSwoSSzJzM9TKMtMVAhKTUrMScxLTk1RCC5N0k2BKsrJTM_LTc0r4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzcxMDA2NLIzNj4lQBAGHGNJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774003926</pqid></control><display><type>article</type><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><source>Publicly Available Content Database</source><creator>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</creator><creatorcontrib>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</creatorcontrib><description>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Algorithms ; Domains ; Knowledge management</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2774003926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Yiling</creatorcontrib><creatorcontrib>Dong, Juncheng</creatorcontrib><creatorcontrib>Jiang, Ziyang</creatorcontrib><creatorcontrib>Aloui, Ahmed</creatorcontrib><creatorcontrib>Li, Keyu</creatorcontrib><creatorcontrib>Klein, Hunter</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><creatorcontrib>Carlson, David</creatorcontrib><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><title>arXiv.org</title><description>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Domains</subject><subject>Knowledge management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcnPTczMU3BMSSwoSSzJzM9TKMtMVAhKTUrMScxLTk1RCC5N0k2BKsrJTM_LTc0r4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzcxMDA2NLIzNj4lQBAGHGNJY</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Liu, Yiling</creator><creator>Dong, Juncheng</creator><creator>Jiang, Ziyang</creator><creator>Aloui, Ahmed</creator><creator>Li, Keyu</creator><creator>Klein, Hunter</creator><creator>Tarokh, Vahid</creator><creator>Carlson, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230203</creationdate><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><author>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27740039263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Domains</topic><topic>Knowledge management</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yiling</creatorcontrib><creatorcontrib>Dong, Juncheng</creatorcontrib><creatorcontrib>Jiang, Ziyang</creatorcontrib><creatorcontrib>Aloui, Ahmed</creatorcontrib><creatorcontrib>Li, Keyu</creatorcontrib><creatorcontrib>Klein, Hunter</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><creatorcontrib>Carlson, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yiling</au><au>Dong, Juncheng</au><au>Jiang, Ziyang</au><au>Aloui, Ahmed</au><au>Li, Keyu</au><au>Klein, Hunter</au><au>Tarokh, Vahid</au><au>Carlson, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domain Adaptation via Rebalanced Sub-domain Alignment</atitle><jtitle>arXiv.org</jtitle><date>2023-02-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2774003926 |
source | Publicly Available Content Database |
subjects | Adaptation Algorithms Domains Knowledge management |
title | Domain Adaptation via Rebalanced Sub-domain Alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domain%20Adaptation%20via%20Rebalanced%20Sub-domain%20Alignment&rft.jtitle=arXiv.org&rft.au=Liu,%20Yiling&rft.date=2023-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2774003926%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27740039263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774003926&rft_id=info:pmid/&rfr_iscdi=true |