Loading…

Domain Adaptation via Rebalanced Sub-domain Alignment

Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-02
Main Authors: Liu, Yiling, Dong, Juncheng, Jiang, Ziyang, Aloui, Ahmed, Li, Keyu, Klein, Hunter, Tarokh, Vahid, Carlson, David
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Yiling
Dong, Juncheng
Jiang, Ziyang
Aloui, Ahmed
Li, Keyu
Klein, Hunter
Tarokh, Vahid
Carlson, David
description Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2774003926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774003926</sourcerecordid><originalsourceid>FETCH-proquest_journals_27740039263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcnPTczMU3BMSSwoSSzJzM9TKMtMVAhKTUrMScxLTk1RCC5N0k2BKsrJTM_LTc0r4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzcxMDA2NLIzNj4lQBAGHGNJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774003926</pqid></control><display><type>article</type><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><source>Publicly Available Content Database</source><creator>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</creator><creatorcontrib>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</creatorcontrib><description>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Algorithms ; Domains ; Knowledge management</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2774003926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Yiling</creatorcontrib><creatorcontrib>Dong, Juncheng</creatorcontrib><creatorcontrib>Jiang, Ziyang</creatorcontrib><creatorcontrib>Aloui, Ahmed</creatorcontrib><creatorcontrib>Li, Keyu</creatorcontrib><creatorcontrib>Klein, Hunter</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><creatorcontrib>Carlson, David</creatorcontrib><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><title>arXiv.org</title><description>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Domains</subject><subject>Knowledge management</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcnPTczMU3BMSSwoSSzJzM9TKMtMVAhKTUrMScxLTk1RCC5N0k2BKsrJTM_LTc0r4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzcxMDA2NLIzNj4lQBAGHGNJY</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Liu, Yiling</creator><creator>Dong, Juncheng</creator><creator>Jiang, Ziyang</creator><creator>Aloui, Ahmed</creator><creator>Li, Keyu</creator><creator>Klein, Hunter</creator><creator>Tarokh, Vahid</creator><creator>Carlson, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230203</creationdate><title>Domain Adaptation via Rebalanced Sub-domain Alignment</title><author>Liu, Yiling ; Dong, Juncheng ; Jiang, Ziyang ; Aloui, Ahmed ; Li, Keyu ; Klein, Hunter ; Tarokh, Vahid ; Carlson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27740039263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Domains</topic><topic>Knowledge management</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yiling</creatorcontrib><creatorcontrib>Dong, Juncheng</creatorcontrib><creatorcontrib>Jiang, Ziyang</creatorcontrib><creatorcontrib>Aloui, Ahmed</creatorcontrib><creatorcontrib>Li, Keyu</creatorcontrib><creatorcontrib>Klein, Hunter</creatorcontrib><creatorcontrib>Tarokh, Vahid</creatorcontrib><creatorcontrib>Carlson, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yiling</au><au>Dong, Juncheng</au><au>Jiang, Ziyang</au><au>Aloui, Ahmed</au><au>Li, Keyu</au><au>Klein, Hunter</au><au>Tarokh, Vahid</au><au>Carlson, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domain Adaptation via Rebalanced Sub-domain Alignment</atitle><jtitle>arXiv.org</jtitle><date>2023-02-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Unsupervised domain adaptation (UDA) is a technique used to transfer knowledge from a labeled source domain to a different but related unlabeled target domain. While many UDA methods have shown success in the past, they often assume that the source and target domains must have identical class label distributions, which can limit their effectiveness in real-world scenarios. To address this limitation, we propose a novel generalization bound that reweights source classification error by aligning source and target sub-domains. We prove that our proposed generalization bound is at least as strong as existing bounds under realistic assumptions, and we empirically show that it is much stronger on real-world data. We then propose an algorithm to minimize this novel generalization bound. We demonstrate by numerical experiments that this approach improves performance in shifted class distribution scenarios compared to state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2774003926
source Publicly Available Content Database
subjects Adaptation
Algorithms
Domains
Knowledge management
title Domain Adaptation via Rebalanced Sub-domain Alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domain%20Adaptation%20via%20Rebalanced%20Sub-domain%20Alignment&rft.jtitle=arXiv.org&rft.au=Liu,%20Yiling&rft.date=2023-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2774003926%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27740039263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774003926&rft_id=info:pmid/&rfr_iscdi=true