Loading…

An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences

Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discr...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2022-12, Vol.402, p.115476, Article 115476
Main Authors: Devloo, Philippe R.B., Fernandes, Jeferson W.D., Gomes, Sônia M., Orlandini, Francisco T., Shauer, Nathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293
cites cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293
container_end_page
container_issue
container_start_page 115476
container_title Computer methods in applied mechanics and engineering
container_volume 402
creator Devloo, Philippe R.B.
Fernandes, Jeferson W.D.
Gomes, Sônia M.
Orlandini, Francisco T.
Shauer, Nathan
description Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.
doi_str_mv 10.1016/j.cma.2022.115476
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774243904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522005023</els_id><sourcerecordid>2774243904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz12TSdOmeFoWv2BBED2HbDpxU7btmmSX9d_bUs_OZS7P-87wEHLL2YIzXtw3C9uaBTCABecyL4szMuOqrDLgQp2TGWO5zEoF8pJcxdiwYRSHGdktO4rOeeuxS9T2XUzhYJPvO9o7Wvsjhi_sLGYuINK4NxYj9R1NWxzphKc0gngyNlHnO5-Q4g7bsa1G-r41LY34fRg74jW5cGYX8eZvz8nn0-PH6iVbvz2_rpbrzIKUKQPgZeVMiSBqWYHgiqNBp6yDSipnsHYbYCLfyGpTiBoQitxYJepSKLRQiTm5m3r3oR9Ox6Sb_hC64aSGsswhFxXLB4pPlA19jAGd3gffmvCjOdOjVN3oQaoepepJ6pB5mDI4vH_0GHQczVmsfUCbdN37f9K_1tqABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243904</pqid></control><display><type>article</type><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><source>Elsevier</source><creator>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</creator><creatorcontrib>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</creatorcontrib><description>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115476</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Couplings ; Differential equations ; Divergence ; Finite element exact sequences ; Fluid flow ; Incompressible flow ; Mixed methods ; Operators (mathematics) ; Porous media ; Robustness (mathematics) ; Sequences ; Shape functions ; Strong divergence-free flux approximations ; Subspaces</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115476, Article 115476</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</citedby><cites>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</cites><orcidid>0000-0002-8225-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Devloo, Philippe R.B.</creatorcontrib><creatorcontrib>Fernandes, Jeferson W.D.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Orlandini, Francisco T.</creatorcontrib><creatorcontrib>Shauer, Nathan</creatorcontrib><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><title>Computer methods in applied mechanics and engineering</title><description>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</description><subject>Couplings</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Finite element exact sequences</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mixed methods</subject><subject>Operators (mathematics)</subject><subject>Porous media</subject><subject>Robustness (mathematics)</subject><subject>Sequences</subject><subject>Shape functions</subject><subject>Strong divergence-free flux approximations</subject><subject>Subspaces</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz12TSdOmeFoWv2BBED2HbDpxU7btmmSX9d_bUs_OZS7P-87wEHLL2YIzXtw3C9uaBTCABecyL4szMuOqrDLgQp2TGWO5zEoF8pJcxdiwYRSHGdktO4rOeeuxS9T2XUzhYJPvO9o7Wvsjhi_sLGYuINK4NxYj9R1NWxzphKc0gngyNlHnO5-Q4g7bsa1G-r41LY34fRg74jW5cGYX8eZvz8nn0-PH6iVbvz2_rpbrzIKUKQPgZeVMiSBqWYHgiqNBp6yDSipnsHYbYCLfyGpTiBoQitxYJepSKLRQiTm5m3r3oR9Ox6Sb_hC64aSGsswhFxXLB4pPlA19jAGd3gffmvCjOdOjVN3oQaoepepJ6pB5mDI4vH_0GHQczVmsfUCbdN37f9K_1tqABQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Devloo, Philippe R.B.</creator><creator>Fernandes, Jeferson W.D.</creator><creator>Gomes, Sônia M.</creator><creator>Orlandini, Francisco T.</creator><creator>Shauer, Nathan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8225-1107</orcidid></search><sort><creationdate>20221201</creationdate><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><author>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Couplings</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Finite element exact sequences</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mixed methods</topic><topic>Operators (mathematics)</topic><topic>Porous media</topic><topic>Robustness (mathematics)</topic><topic>Sequences</topic><topic>Shape functions</topic><topic>Strong divergence-free flux approximations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devloo, Philippe R.B.</creatorcontrib><creatorcontrib>Fernandes, Jeferson W.D.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Orlandini, Francisco T.</creatorcontrib><creatorcontrib>Shauer, Nathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devloo, Philippe R.B.</au><au>Fernandes, Jeferson W.D.</au><au>Gomes, Sônia M.</au><au>Orlandini, Francisco T.</au><au>Shauer, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>402</volume><spage>115476</spage><pages>115476-</pages><artnum>115476</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115476</doi><orcidid>https://orcid.org/0000-0002-8225-1107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115476, Article 115476
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2774243904
source Elsevier
subjects Couplings
Differential equations
Divergence
Finite element exact sequences
Fluid flow
Incompressible flow
Mixed methods
Operators (mathematics)
Porous media
Robustness (mathematics)
Sequences
Shape functions
Strong divergence-free flux approximations
Subspaces
title An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20construction%20of%20divergence-free%20spaces%20in%20the%20context%20of%20exact%20finite%20element%20de%20Rham%20sequences&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Devloo,%20Philippe%20R.B.&rft.date=2022-12-01&rft.volume=402&rft.spage=115476&rft.pages=115476-&rft.artnum=115476&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115476&rft_dat=%3Cproquest_cross%3E2774243904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774243904&rft_id=info:pmid/&rfr_iscdi=true