Loading…
An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences
Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discr...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2022-12, Vol.402, p.115476, Article 115476 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293 |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293 |
container_end_page | |
container_issue | |
container_start_page | 115476 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 402 |
creator | Devloo, Philippe R.B. Fernandes, Jeferson W.D. Gomes, Sônia M. Orlandini, Francisco T. Shauer, Nathan |
description | Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results. |
doi_str_mv | 10.1016/j.cma.2022.115476 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774243904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522005023</els_id><sourcerecordid>2774243904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz12TSdOmeFoWv2BBED2HbDpxU7btmmSX9d_bUs_OZS7P-87wEHLL2YIzXtw3C9uaBTCABecyL4szMuOqrDLgQp2TGWO5zEoF8pJcxdiwYRSHGdktO4rOeeuxS9T2XUzhYJPvO9o7Wvsjhi_sLGYuINK4NxYj9R1NWxzphKc0gngyNlHnO5-Q4g7bsa1G-r41LY34fRg74jW5cGYX8eZvz8nn0-PH6iVbvz2_rpbrzIKUKQPgZeVMiSBqWYHgiqNBp6yDSipnsHYbYCLfyGpTiBoQitxYJepSKLRQiTm5m3r3oR9Ox6Sb_hC64aSGsswhFxXLB4pPlA19jAGd3gffmvCjOdOjVN3oQaoepepJ6pB5mDI4vH_0GHQczVmsfUCbdN37f9K_1tqABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774243904</pqid></control><display><type>article</type><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><source>Elsevier</source><creator>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</creator><creatorcontrib>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</creatorcontrib><description>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115476</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Couplings ; Differential equations ; Divergence ; Finite element exact sequences ; Fluid flow ; Incompressible flow ; Mixed methods ; Operators (mathematics) ; Porous media ; Robustness (mathematics) ; Sequences ; Shape functions ; Strong divergence-free flux approximations ; Subspaces</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115476, Article 115476</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</citedby><cites>FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</cites><orcidid>0000-0002-8225-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Devloo, Philippe R.B.</creatorcontrib><creatorcontrib>Fernandes, Jeferson W.D.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Orlandini, Francisco T.</creatorcontrib><creatorcontrib>Shauer, Nathan</creatorcontrib><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><title>Computer methods in applied mechanics and engineering</title><description>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</description><subject>Couplings</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Finite element exact sequences</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mixed methods</subject><subject>Operators (mathematics)</subject><subject>Porous media</subject><subject>Robustness (mathematics)</subject><subject>Sequences</subject><subject>Shape functions</subject><subject>Strong divergence-free flux approximations</subject><subject>Subspaces</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz12TSdOmeFoWv2BBED2HbDpxU7btmmSX9d_bUs_OZS7P-87wEHLL2YIzXtw3C9uaBTCABecyL4szMuOqrDLgQp2TGWO5zEoF8pJcxdiwYRSHGdktO4rOeeuxS9T2XUzhYJPvO9o7Wvsjhi_sLGYuINK4NxYj9R1NWxzphKc0gngyNlHnO5-Q4g7bsa1G-r41LY34fRg74jW5cGYX8eZvz8nn0-PH6iVbvz2_rpbrzIKUKQPgZeVMiSBqWYHgiqNBp6yDSipnsHYbYCLfyGpTiBoQitxYJepSKLRQiTm5m3r3oR9Ox6Sb_hC64aSGsswhFxXLB4pPlA19jAGd3gffmvCjOdOjVN3oQaoepepJ6pB5mDI4vH_0GHQczVmsfUCbdN37f9K_1tqABQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Devloo, Philippe R.B.</creator><creator>Fernandes, Jeferson W.D.</creator><creator>Gomes, Sônia M.</creator><creator>Orlandini, Francisco T.</creator><creator>Shauer, Nathan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8225-1107</orcidid></search><sort><creationdate>20221201</creationdate><title>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</title><author>Devloo, Philippe R.B. ; Fernandes, Jeferson W.D. ; Gomes, Sônia M. ; Orlandini, Francisco T. ; Shauer, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Couplings</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Finite element exact sequences</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mixed methods</topic><topic>Operators (mathematics)</topic><topic>Porous media</topic><topic>Robustness (mathematics)</topic><topic>Sequences</topic><topic>Shape functions</topic><topic>Strong divergence-free flux approximations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devloo, Philippe R.B.</creatorcontrib><creatorcontrib>Fernandes, Jeferson W.D.</creatorcontrib><creatorcontrib>Gomes, Sônia M.</creatorcontrib><creatorcontrib>Orlandini, Francisco T.</creatorcontrib><creatorcontrib>Shauer, Nathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devloo, Philippe R.B.</au><au>Fernandes, Jeferson W.D.</au><au>Gomes, Sônia M.</au><au>Orlandini, Francisco T.</au><au>Shauer, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>402</volume><spage>115476</spage><pages>115476-</pages><artnum>115476</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Exact finite element de Rham subcomplexes relate conforming subspaces in H1(Ω), H(curl;Ω), H(div;Ω), and L2(Ω) in a simple way by means of differential operators (gradient, curl, and divergence). The characteristics of such strong couplings are crucial for the design of stable and conservative discretizations of mixed formulations for a variety of multiphysics systems. This work explores these aspects for the construction of divergence-free vector shape functions in a robust fashion allowing stable and faster simulations of mixed formulations of incompressible porous media flows. The resulting schemes are verified by means of numerical tests with known smooth solutions and applied to a benchmark problem to confirm the expected theoretical and computational performance results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115476</doi><orcidid>https://orcid.org/0000-0002-8225-1107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-12, Vol.402, p.115476, Article 115476 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2774243904 |
source | Elsevier |
subjects | Couplings Differential equations Divergence Finite element exact sequences Fluid flow Incompressible flow Mixed methods Operators (mathematics) Porous media Robustness (mathematics) Sequences Shape functions Strong divergence-free flux approximations Subspaces |
title | An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20construction%20of%20divergence-free%20spaces%20in%20the%20context%20of%20exact%20finite%20element%20de%20Rham%20sequences&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Devloo,%20Philippe%20R.B.&rft.date=2022-12-01&rft.volume=402&rft.spage=115476&rft.pages=115476-&rft.artnum=115476&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115476&rft_dat=%3Cproquest_cross%3E2774243904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-22179fa7e23d5923181eaef8cf2958faedfb2034b59b63d2e264ac83d738ec293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774243904&rft_id=info:pmid/&rfr_iscdi=true |