Loading…
Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs
The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2023-04, Vol.33 (3), p.1-6 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973 |
---|---|
cites | cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973 |
container_end_page | 6 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Ozturk, U. Kemal Abdioglu, Murat Mollahasanoglu, Hakki |
description | The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems. |
doi_str_mv | 10.1109/TASC.2023.3237762 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774333816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774333816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWKs_wLeAz1snt83msRRrhZYWuuCbYS-Jpmw3NdmV9t-7pX2aw3DmnOFD6JnAhBBQr_l0O5tQoGzCKJMypTdoRITIEiqIuB00CJJklLJ79BDjDoDwjIsR-loV363pXIXnPlQGb0ywPuyLdtDe4sWpDK7Gq77pXOyDLYb1It_i4aoxf3h7ip3Z40_X_eBpf3SNK8IJr9vSF6HGm1V8RHe2aKJ5us4xyudv-WyRLNfvH7PpMqkosC6RRKbcWkFpxRWvK8UFUwasBKhJxlgqIFWWlCBrzsBUWWmApyJVtTJWSTZGL5fYQ_C_vYmd3vk-tEOjplJyxlhG0sFFLq4q-BiDsfoQ3H74WBPQZ4r6TFGfKeorRfYP-Epjvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774333816</pqid></control><display><type>article</type><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><source>IEEE Xplore (Online service)</source><creator>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</creator><creatorcontrib>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</creatorcontrib><description>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3237762</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>High temperature ; Hybrid systems ; Magnetic fields ; Magnetic levitation ; Onboard ; Permanent magnets ; Railroad transportation ; Stiffness ; Vertical forces ; Vertical orientation</subject><ispartof>IEEE transactions on applied superconductivity, 2023-04, Vol.33 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</citedby><cites>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</cites><orcidid>0000-0002-8847-1880 ; 0000-0002-5497-0817 ; 0000-0001-6233-9198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ozturk, U. Kemal</creatorcontrib><creatorcontrib>Abdioglu, Murat</creatorcontrib><creatorcontrib>Mollahasanoglu, Hakki</creatorcontrib><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><title>IEEE transactions on applied superconductivity</title><description>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</description><subject>High temperature</subject><subject>Hybrid systems</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Onboard</subject><subject>Permanent magnets</subject><subject>Railroad transportation</subject><subject>Stiffness</subject><subject>Vertical forces</subject><subject>Vertical orientation</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkFtLAzEQhYMoWKs_wLeAz1snt83msRRrhZYWuuCbYS-Jpmw3NdmV9t-7pX2aw3DmnOFD6JnAhBBQr_l0O5tQoGzCKJMypTdoRITIEiqIuB00CJJklLJ79BDjDoDwjIsR-loV363pXIXnPlQGb0ywPuyLdtDe4sWpDK7Gq77pXOyDLYb1It_i4aoxf3h7ip3Z40_X_eBpf3SNK8IJr9vSF6HGm1V8RHe2aKJ5us4xyudv-WyRLNfvH7PpMqkosC6RRKbcWkFpxRWvK8UFUwasBKhJxlgqIFWWlCBrzsBUWWmApyJVtTJWSTZGL5fYQ_C_vYmd3vk-tEOjplJyxlhG0sFFLq4q-BiDsfoQ3H74WBPQZ4r6TFGfKeorRfYP-Epjvg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ozturk, U. Kemal</creator><creator>Abdioglu, Murat</creator><creator>Mollahasanoglu, Hakki</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8847-1880</orcidid><orcidid>https://orcid.org/0000-0002-5497-0817</orcidid><orcidid>https://orcid.org/0000-0001-6233-9198</orcidid></search><sort><creationdate>20230401</creationdate><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><author>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>High temperature</topic><topic>Hybrid systems</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Onboard</topic><topic>Permanent magnets</topic><topic>Railroad transportation</topic><topic>Stiffness</topic><topic>Vertical forces</topic><topic>Vertical orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozturk, U. Kemal</creatorcontrib><creatorcontrib>Abdioglu, Murat</creatorcontrib><creatorcontrib>Mollahasanoglu, Hakki</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozturk, U. Kemal</au><au>Abdioglu, Murat</au><au>Mollahasanoglu, Hakki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TASC.2023.3237762</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8847-1880</orcidid><orcidid>https://orcid.org/0000-0002-5497-0817</orcidid><orcidid>https://orcid.org/0000-0001-6233-9198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-04, Vol.33 (3), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2774333816 |
source | IEEE Xplore (Online service) |
subjects | High temperature Hybrid systems Magnetic fields Magnetic levitation Onboard Permanent magnets Railroad transportation Stiffness Vertical forces Vertical orientation |
title | Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Force%20Performance%20of%20Hybrid%20Multisurface%20HTS%20Maglev%20System%20With%20Auxiliary%20Onboard%20PMs&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Ozturk,%20U.%20Kemal&rft.date=2023-04-01&rft.volume=33&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2023.3237762&rft_dat=%3Cproquest_cross%3E2774333816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774333816&rft_id=info:pmid/&rfr_iscdi=true |