Loading…

Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs

The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2023-04, Vol.33 (3), p.1-6
Main Authors: Ozturk, U. Kemal, Abdioglu, Murat, Mollahasanoglu, Hakki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973
cites cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973
container_end_page 6
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Ozturk, U. Kemal
Abdioglu, Murat
Mollahasanoglu, Hakki
description The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.
doi_str_mv 10.1109/TASC.2023.3237762
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774333816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774333816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWKs_wLeAz1snt83msRRrhZYWuuCbYS-Jpmw3NdmV9t-7pX2aw3DmnOFD6JnAhBBQr_l0O5tQoGzCKJMypTdoRITIEiqIuB00CJJklLJ79BDjDoDwjIsR-loV363pXIXnPlQGb0ywPuyLdtDe4sWpDK7Gq77pXOyDLYb1It_i4aoxf3h7ip3Z40_X_eBpf3SNK8IJr9vSF6HGm1V8RHe2aKJ5us4xyudv-WyRLNfvH7PpMqkosC6RRKbcWkFpxRWvK8UFUwasBKhJxlgqIFWWlCBrzsBUWWmApyJVtTJWSTZGL5fYQ_C_vYmd3vk-tEOjplJyxlhG0sFFLq4q-BiDsfoQ3H74WBPQZ4r6TFGfKeorRfYP-Epjvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774333816</pqid></control><display><type>article</type><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><source>IEEE Xplore (Online service)</source><creator>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</creator><creatorcontrib>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</creatorcontrib><description>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3237762</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>High temperature ; Hybrid systems ; Magnetic fields ; Magnetic levitation ; Onboard ; Permanent magnets ; Railroad transportation ; Stiffness ; Vertical forces ; Vertical orientation</subject><ispartof>IEEE transactions on applied superconductivity, 2023-04, Vol.33 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</citedby><cites>FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</cites><orcidid>0000-0002-8847-1880 ; 0000-0002-5497-0817 ; 0000-0001-6233-9198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ozturk, U. Kemal</creatorcontrib><creatorcontrib>Abdioglu, Murat</creatorcontrib><creatorcontrib>Mollahasanoglu, Hakki</creatorcontrib><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><title>IEEE transactions on applied superconductivity</title><description>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</description><subject>High temperature</subject><subject>Hybrid systems</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Onboard</subject><subject>Permanent magnets</subject><subject>Railroad transportation</subject><subject>Stiffness</subject><subject>Vertical forces</subject><subject>Vertical orientation</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkFtLAzEQhYMoWKs_wLeAz1snt83msRRrhZYWuuCbYS-Jpmw3NdmV9t-7pX2aw3DmnOFD6JnAhBBQr_l0O5tQoGzCKJMypTdoRITIEiqIuB00CJJklLJ79BDjDoDwjIsR-loV363pXIXnPlQGb0ywPuyLdtDe4sWpDK7Gq77pXOyDLYb1It_i4aoxf3h7ip3Z40_X_eBpf3SNK8IJr9vSF6HGm1V8RHe2aKJ5us4xyudv-WyRLNfvH7PpMqkosC6RRKbcWkFpxRWvK8UFUwasBKhJxlgqIFWWlCBrzsBUWWmApyJVtTJWSTZGL5fYQ_C_vYmd3vk-tEOjplJyxlhG0sFFLq4q-BiDsfoQ3H74WBPQZ4r6TFGfKeorRfYP-Epjvg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ozturk, U. Kemal</creator><creator>Abdioglu, Murat</creator><creator>Mollahasanoglu, Hakki</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8847-1880</orcidid><orcidid>https://orcid.org/0000-0002-5497-0817</orcidid><orcidid>https://orcid.org/0000-0001-6233-9198</orcidid></search><sort><creationdate>20230401</creationdate><title>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</title><author>Ozturk, U. Kemal ; Abdioglu, Murat ; Mollahasanoglu, Hakki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>High temperature</topic><topic>Hybrid systems</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Onboard</topic><topic>Permanent magnets</topic><topic>Railroad transportation</topic><topic>Stiffness</topic><topic>Vertical forces</topic><topic>Vertical orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozturk, U. Kemal</creatorcontrib><creatorcontrib>Abdioglu, Murat</creatorcontrib><creatorcontrib>Mollahasanoglu, Hakki</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozturk, U. Kemal</au><au>Abdioglu, Murat</au><au>Mollahasanoglu, Hakki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>The vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (ZPM) to ZPM = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and ZPM = 0 mm, indicates that the hybrid multisurface HTS–PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TASC.2023.3237762</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8847-1880</orcidid><orcidid>https://orcid.org/0000-0002-5497-0817</orcidid><orcidid>https://orcid.org/0000-0001-6233-9198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-04, Vol.33 (3), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2774333816
source IEEE Xplore (Online service)
subjects High temperature
Hybrid systems
Magnetic fields
Magnetic levitation
Onboard
Permanent magnets
Railroad transportation
Stiffness
Vertical forces
Vertical orientation
title Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Force%20Performance%20of%20Hybrid%20Multisurface%20HTS%20Maglev%20System%20With%20Auxiliary%20Onboard%20PMs&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Ozturk,%20U.%20Kemal&rft.date=2023-04-01&rft.volume=33&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2023.3237762&rft_dat=%3Cproquest_cross%3E2774333816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-71764ff522c494dc94539e0f700d183365069f1b07d430ec8be046569d9ef973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774333816&rft_id=info:pmid/&rfr_iscdi=true