Loading…

Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications

Machine learning (ML) plays a key role in Intelligent Industrial Internet of Things (IIoT) applications. Processing of the computation-intensive ML tasks can be largely enhanced by applying edge computing (EC) to traditional cloud-based schemes. System optimizations in the existing works always igno...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2023-02, Vol.10 (4), p.3305-3321
Main Authors: Fan, Wenhao, Li, Shenmeng, Liu, Jie, Su, Yi, Wu, Fan, Liu, Yuan'An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3
cites cdi_FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3
container_end_page 3321
container_issue 4
container_start_page 3305
container_title IEEE internet of things journal
container_volume 10
creator Fan, Wenhao
Li, Shenmeng
Liu, Jie
Su, Yi
Wu, Fan
Liu, Yuan'An
description Machine learning (ML) plays a key role in Intelligent Industrial Internet of Things (IIoT) applications. Processing of the computation-intensive ML tasks can be largely enhanced by applying edge computing (EC) to traditional cloud-based schemes. System optimizations in the existing works always ignore the inference accuracy of ML models with different complexities, and their impacts on error task inference. In this article, we propose a joint task offloading and resource allocation scheme for accuracy-aware machine-learning-based IIoT applications in an edge-cloud-based network architecture. We aim at minimizing the long-term average system cost affected by the task offloading, computing resource allocation, and inference accuracy of the ML models deployed on the sensors, edge server, and cloud server. The Lyapunov optimization technique is applied to convert the long-term stochastic optimization problem into a short-term deterministic problem. An optimal algorithm based on the general Benders decomposition (GBD) technology and a heuristic algorithm based on proportional computing resource allocation and task offloading strategy comparison are proposed to efficiently solve the problem, respectively. The performance of our scheme is proved by theoretical analysis and evaluated by extensive simulations conducted in multiple scenarios. Simulation results demonstrate the effectiveness and superiority of our two algorithms in comparison with several other schemes proposed by the existing works.
doi_str_mv 10.1109/JIOT.2022.3181990
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2774334162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9794317</ieee_id><sourcerecordid>2774334162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhoMoWLQPIG4GXKfOJWYyy1i8pFQKEtfhdHJGp8ZMnGmRvr1TUsTVOYv_O5cvSa4YnTFG1e2iWtUzTjmfCVYwpehJMuGCyzTLc376rz9PpiFsKKURu2MqnyR24Wy_JTWET7IypnPQ2v6dQN-SVwxu5zWSsuuchq11PTHOk1LrnQe9T8sf8EheQH_YHtMlgu8jm95DwJZUlatJOQydHdFwmZwZ6AJOj_UieXt8qOfP6XL1VM3LZap5lqmUIQWJiFxJjpLrNqO0LRhwpbAQMUJRKw5mjVC0OlOwBqMysRamzaXgRlwkN-PcwbvvHYZts4lv9HFlw6XMhMhYzmOKjSntXQgeTTN4-wV-3zDaHKQ2B6nNQWpzlBqZ65Gx8b6_vJJxPZPiFyDFcwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774334162</pqid></control><display><type>article</type><title>Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fan, Wenhao ; Li, Shenmeng ; Liu, Jie ; Su, Yi ; Wu, Fan ; Liu, Yuan'An</creator><creatorcontrib>Fan, Wenhao ; Li, Shenmeng ; Liu, Jie ; Su, Yi ; Wu, Fan ; Liu, Yuan'An</creatorcontrib><description>Machine learning (ML) plays a key role in Intelligent Industrial Internet of Things (IIoT) applications. Processing of the computation-intensive ML tasks can be largely enhanced by applying edge computing (EC) to traditional cloud-based schemes. System optimizations in the existing works always ignore the inference accuracy of ML models with different complexities, and their impacts on error task inference. In this article, we propose a joint task offloading and resource allocation scheme for accuracy-aware machine-learning-based IIoT applications in an edge-cloud-based network architecture. We aim at minimizing the long-term average system cost affected by the task offloading, computing resource allocation, and inference accuracy of the ML models deployed on the sensors, edge server, and cloud server. The Lyapunov optimization technique is applied to convert the long-term stochastic optimization problem into a short-term deterministic problem. An optimal algorithm based on the general Benders decomposition (GBD) technology and a heuristic algorithm based on proportional computing resource allocation and task offloading strategy comparison are proposed to efficiently solve the problem, respectively. The performance of our scheme is proved by theoretical analysis and evaluated by extensive simulations conducted in multiple scenarios. Simulation results demonstrate the effectiveness and superiority of our two algorithms in comparison with several other schemes proposed by the existing works.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3181990</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Benders decomposition ; Cloud computing ; Computation offloading ; Computational modeling ; Computer architecture ; Edge computing ; edge computing (EC) ; Heuristic methods ; Industrial applications ; Industrial Internet of Things ; Inference ; Internet of Things ; Machine learning ; machine learning (ML) ; Model accuracy ; Optimization ; Optimization techniques ; Resource allocation ; Resource management ; Servers ; Task analysis ; task offloading</subject><ispartof>IEEE internet of things journal, 2023-02, Vol.10 (4), p.3305-3321</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3</citedby><cites>FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3</cites><orcidid>0000-0002-5834-8240 ; 0000-0002-1286-7141 ; 0000-0001-5288-8708 ; 0000-0003-0951-5513 ; 0000-0002-8076-1904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9794317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fan, Wenhao</creatorcontrib><creatorcontrib>Li, Shenmeng</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yuan'An</creatorcontrib><title>Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Machine learning (ML) plays a key role in Intelligent Industrial Internet of Things (IIoT) applications. Processing of the computation-intensive ML tasks can be largely enhanced by applying edge computing (EC) to traditional cloud-based schemes. System optimizations in the existing works always ignore the inference accuracy of ML models with different complexities, and their impacts on error task inference. In this article, we propose a joint task offloading and resource allocation scheme for accuracy-aware machine-learning-based IIoT applications in an edge-cloud-based network architecture. We aim at minimizing the long-term average system cost affected by the task offloading, computing resource allocation, and inference accuracy of the ML models deployed on the sensors, edge server, and cloud server. The Lyapunov optimization technique is applied to convert the long-term stochastic optimization problem into a short-term deterministic problem. An optimal algorithm based on the general Benders decomposition (GBD) technology and a heuristic algorithm based on proportional computing resource allocation and task offloading strategy comparison are proposed to efficiently solve the problem, respectively. The performance of our scheme is proved by theoretical analysis and evaluated by extensive simulations conducted in multiple scenarios. Simulation results demonstrate the effectiveness and superiority of our two algorithms in comparison with several other schemes proposed by the existing works.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benders decomposition</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>edge computing (EC)</subject><subject>Heuristic methods</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>Inference</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>task offloading</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKw0AUhoMoWLQPIG4GXKfOJWYyy1i8pFQKEtfhdHJGp8ZMnGmRvr1TUsTVOYv_O5cvSa4YnTFG1e2iWtUzTjmfCVYwpehJMuGCyzTLc376rz9PpiFsKKURu2MqnyR24Wy_JTWET7IypnPQ2v6dQN-SVwxu5zWSsuuchq11PTHOk1LrnQe9T8sf8EheQH_YHtMlgu8jm95DwJZUlatJOQydHdFwmZwZ6AJOj_UieXt8qOfP6XL1VM3LZap5lqmUIQWJiFxJjpLrNqO0LRhwpbAQMUJRKw5mjVC0OlOwBqMysRamzaXgRlwkN-PcwbvvHYZts4lv9HFlw6XMhMhYzmOKjSntXQgeTTN4-wV-3zDaHKQ2B6nNQWpzlBqZ65Gx8b6_vJJxPZPiFyDFcwk</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Fan, Wenhao</creator><creator>Li, Shenmeng</creator><creator>Liu, Jie</creator><creator>Su, Yi</creator><creator>Wu, Fan</creator><creator>Liu, Yuan'An</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5834-8240</orcidid><orcidid>https://orcid.org/0000-0002-1286-7141</orcidid><orcidid>https://orcid.org/0000-0001-5288-8708</orcidid><orcidid>https://orcid.org/0000-0003-0951-5513</orcidid><orcidid>https://orcid.org/0000-0002-8076-1904</orcidid></search><sort><creationdate>20230215</creationdate><title>Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications</title><author>Fan, Wenhao ; Li, Shenmeng ; Liu, Jie ; Su, Yi ; Wu, Fan ; Liu, Yuan'An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benders decomposition</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>edge computing (EC)</topic><topic>Heuristic methods</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>Inference</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>task offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Wenhao</creatorcontrib><creatorcontrib>Li, Shenmeng</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yuan'An</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Wenhao</au><au>Li, Shenmeng</au><au>Liu, Jie</au><au>Su, Yi</au><au>Wu, Fan</au><au>Liu, Yuan'An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-02-15</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>3305</spage><epage>3321</epage><pages>3305-3321</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Machine learning (ML) plays a key role in Intelligent Industrial Internet of Things (IIoT) applications. Processing of the computation-intensive ML tasks can be largely enhanced by applying edge computing (EC) to traditional cloud-based schemes. System optimizations in the existing works always ignore the inference accuracy of ML models with different complexities, and their impacts on error task inference. In this article, we propose a joint task offloading and resource allocation scheme for accuracy-aware machine-learning-based IIoT applications in an edge-cloud-based network architecture. We aim at minimizing the long-term average system cost affected by the task offloading, computing resource allocation, and inference accuracy of the ML models deployed on the sensors, edge server, and cloud server. The Lyapunov optimization technique is applied to convert the long-term stochastic optimization problem into a short-term deterministic problem. An optimal algorithm based on the general Benders decomposition (GBD) technology and a heuristic algorithm based on proportional computing resource allocation and task offloading strategy comparison are proposed to efficiently solve the problem, respectively. The performance of our scheme is proved by theoretical analysis and evaluated by extensive simulations conducted in multiple scenarios. Simulation results demonstrate the effectiveness and superiority of our two algorithms in comparison with several other schemes proposed by the existing works.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3181990</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5834-8240</orcidid><orcidid>https://orcid.org/0000-0002-1286-7141</orcidid><orcidid>https://orcid.org/0000-0001-5288-8708</orcidid><orcidid>https://orcid.org/0000-0003-0951-5513</orcidid><orcidid>https://orcid.org/0000-0002-8076-1904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-02, Vol.10 (4), p.3305-3321
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2774334162
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Algorithms
Benders decomposition
Cloud computing
Computation offloading
Computational modeling
Computer architecture
Edge computing
edge computing (EC)
Heuristic methods
Industrial applications
Industrial Internet of Things
Inference
Internet of Things
Machine learning
machine learning (ML)
Model accuracy
Optimization
Optimization techniques
Resource allocation
Resource management
Servers
Task analysis
task offloading
title Joint Task Offloading and Resource Allocation for Accuracy-Aware Machine-Learning-Based IIoT Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Task%20Offloading%20and%20Resource%20Allocation%20for%20Accuracy-Aware%20Machine-Learning-Based%20IIoT%20Applications&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Fan,%20Wenhao&rft.date=2023-02-15&rft.volume=10&rft.issue=4&rft.spage=3305&rft.epage=3321&rft.pages=3305-3321&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3181990&rft_dat=%3Cproquest_ieee_%3E2774334162%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2449-1e0a7eee2972e72cd400d81a299e832440ec92afbea8dc49abaf943b3fd6732f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774334162&rft_id=info:pmid/&rft_ieee_id=9794317&rfr_iscdi=true