Loading…

Target-based Surrogates for Stochastic Optimization

We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Jonathan Wilder Lavington, Vaswani, Sharan, Babanezhad, Reza, Schmidt, Mark, Nicolas Le Roux
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jonathan Wilder Lavington
Vaswani, Sharan
Babanezhad, Reza
Schmidt, Mark
Nicolas Le Roux
description We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the \(SSO\) algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for \(SSO\) when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of \(SSO\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2774362324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774362324</sourcerecordid><originalsourceid>FETCH-proquest_journals_27743623243</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivEMT5yb1rlB3o3FzgJ1ULFiiFHvH4tPr4AM4_cP3L0QGiDu1NwArkRMNWmsoLRQFZgJrl3rP6urI32Q1pxR7x55kF5OsOLZ3RxxaeZk4PMPbcYjjRiw79yCf_7oW29OxPpzVlOJr9sTNEOc0fqkBaw2WgGDwv-sDSZY0rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774362324</pqid></control><display><type>article</type><title>Target-based Surrogates for Stochastic Optimization</title><source>Publicly Available Content Database</source><creator>Jonathan Wilder Lavington ; Vaswani, Sharan ; Babanezhad, Reza ; Schmidt, Mark ; Nicolas Le Roux</creator><creatorcontrib>Jonathan Wilder Lavington ; Vaswani, Sharan ; Babanezhad, Reza ; Schmidt, Mark ; Nicolas Le Roux</creatorcontrib><description>We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the \(SSO\) algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for \(SSO\) when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of \(SSO\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computation ; Machine learning ; Optimization ; Supervised learning ; Upper bounds</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2774362324?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Jonathan Wilder Lavington</creatorcontrib><creatorcontrib>Vaswani, Sharan</creatorcontrib><creatorcontrib>Babanezhad, Reza</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Nicolas Le Roux</creatorcontrib><title>Target-based Surrogates for Stochastic Optimization</title><title>arXiv.org</title><description>We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the \(SSO\) algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for \(SSO\) when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of \(SSO\).</description><subject>Algorithms</subject><subject>Computation</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Supervised learning</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAQgOHGxESivEMT5yb1rlB3o3FzgJ1ULFiiFHvH4tPr4AM4_cP3L0QGiDu1NwArkRMNWmsoLRQFZgJrl3rP6urI32Q1pxR7x55kF5OsOLZ3RxxaeZk4PMPbcYjjRiw79yCf_7oW29OxPpzVlOJr9sTNEOc0fqkBaw2WgGDwv-sDSZY0rQ</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Jonathan Wilder Lavington</creator><creator>Vaswani, Sharan</creator><creator>Babanezhad, Reza</creator><creator>Schmidt, Mark</creator><creator>Nicolas Le Roux</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230608</creationdate><title>Target-based Surrogates for Stochastic Optimization</title><author>Jonathan Wilder Lavington ; Vaswani, Sharan ; Babanezhad, Reza ; Schmidt, Mark ; Nicolas Le Roux</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27743623243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Supervised learning</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Jonathan Wilder Lavington</creatorcontrib><creatorcontrib>Vaswani, Sharan</creatorcontrib><creatorcontrib>Babanezhad, Reza</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Nicolas Le Roux</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonathan Wilder Lavington</au><au>Vaswani, Sharan</au><au>Babanezhad, Reza</au><au>Schmidt, Mark</au><au>Nicolas Le Roux</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Target-based Surrogates for Stochastic Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-06-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the \(SSO\) algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for \(SSO\) when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of \(SSO\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2774362324
source Publicly Available Content Database
subjects Algorithms
Computation
Machine learning
Optimization
Supervised learning
Upper bounds
title Target-based Surrogates for Stochastic Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Target-based%20Surrogates%20for%20Stochastic%20Optimization&rft.jtitle=arXiv.org&rft.au=Jonathan%20Wilder%20Lavington&rft.date=2023-06-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2774362324%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27743623243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774362324&rft_id=info:pmid/&rfr_iscdi=true