Loading…

An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes

Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2022-10, Vol.43 (10), p.2675-2684
Main Authors: Izvarina, N. R., Savin, A. Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03
container_end_page 2684
container_issue 10
container_start_page 2675
container_title Lobachevskii journal of mathematics
container_volume 43
creator Izvarina, N. R.
Savin, A. Yu
description Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.
doi_str_mv 10.1134/S1995080222130170
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774560492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774560492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G7A9WiSmSRzl7XWHxgQtK6HTHpjp0w7Y5KKdeU7-IY-iSkVXIirc-F851w4hJwyes5Yll88MgBBC8o5Zxlliu6RAStYkQJIvh_vaKdb_5Aceb-gEZRSDsjVaJWMQrPR86-Pz8suhCglWm_mGN6T6Rw7h8vEdi55wFaH5hWTSds2fWhMMu6WfYtv6I_JgdWtx5MfHZKn68l0fJuW9zd341GZGgZFSI2ohQaaG45C0UxSXddGG8MLCnLGrZDGKFUj1DOlrBagKRQAVimQis1oNiRnu97edS9r9KFadGu3ii8rrlQuJM2BR4rtKOM67x3aqnfNUrtNxWi1Hav6M1bM8F3GR3b1jO63-f_QN7NybIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560492</pqid></control><display><type>article</type><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><source>Springer Link</source><creator>Izvarina, N. R. ; Savin, A. Yu</creator><creatorcontrib>Izvarina, N. R. ; Savin, A. Yu</creatorcontrib><description>Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222130170</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Fixed points (mathematics) ; Geometry ; Manifolds (mathematics) ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2022-10, Vol.43 (10), p.2675-2684</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Izvarina, N. R.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fixed points (mathematics)</subject><subject>Geometry</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4G7A9WiSmSRzl7XWHxgQtK6HTHpjp0w7Y5KKdeU7-IY-iSkVXIirc-F851w4hJwyes5Yll88MgBBC8o5Zxlliu6RAStYkQJIvh_vaKdb_5Aceb-gEZRSDsjVaJWMQrPR86-Pz8suhCglWm_mGN6T6Rw7h8vEdi55wFaH5hWTSds2fWhMMu6WfYtv6I_JgdWtx5MfHZKn68l0fJuW9zd341GZGgZFSI2ohQaaG45C0UxSXddGG8MLCnLGrZDGKFUj1DOlrBagKRQAVimQis1oNiRnu97edS9r9KFadGu3ii8rrlQuJM2BR4rtKOM67x3aqnfNUrtNxWi1Hav6M1bM8F3GR3b1jO63-f_QN7NybIk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Izvarina, N. R.</creator><creator>Savin, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><author>Izvarina, N. R. ; Savin, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fixed points (mathematics)</topic><topic>Geometry</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izvarina, N. R.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izvarina, N. R.</au><au>Savin, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>43</volume><issue>10</issue><spage>2675</spage><epage>2684</epage><pages>2675-2684</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222130170</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022-10, Vol.43 (10), p.2675-2684
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2774560492
source Springer Link
subjects Algebra
Analysis
Fixed points (mathematics)
Geometry
Manifolds (mathematics)
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability Theory and Stochastic Processes
title An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Atiyah%E2%80%93Bott%E2%80%93Lefschetz%20Theorem%20for%20Relative%20Elliptic%20Complexes&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Izvarina,%20N.%20R.&rft.date=2022-10-01&rft.volume=43&rft.issue=10&rft.spage=2675&rft.epage=2684&rft.pages=2675-2684&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222130170&rft_dat=%3Cproquest_cross%3E2774560492%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774560492&rft_id=info:pmid/&rfr_iscdi=true