Loading…
An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes
Relative elliptic theory is a theory of elliptic operators for pairs of closed smooth manifolds, where is a submanifold in . We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.
Saved in:
Published in: | Lobachevskii journal of mathematics 2022-10, Vol.43 (10), p.2675-2684 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03 |
container_end_page | 2684 |
container_issue | 10 |
container_start_page | 2675 |
container_title | Lobachevskii journal of mathematics |
container_volume | 43 |
creator | Izvarina, N. R. Savin, A. Yu |
description | Relative elliptic theory is a theory of elliptic operators for pairs
of closed smooth manifolds, where
is a submanifold in
. We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms. |
doi_str_mv | 10.1134/S1995080222130170 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774560492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774560492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G7A9WiSmSRzl7XWHxgQtK6HTHpjp0w7Y5KKdeU7-IY-iSkVXIirc-F851w4hJwyes5Yll88MgBBC8o5Zxlliu6RAStYkQJIvh_vaKdb_5Aceb-gEZRSDsjVaJWMQrPR86-Pz8suhCglWm_mGN6T6Rw7h8vEdi55wFaH5hWTSds2fWhMMu6WfYtv6I_JgdWtx5MfHZKn68l0fJuW9zd341GZGgZFSI2ohQaaG45C0UxSXddGG8MLCnLGrZDGKFUj1DOlrBagKRQAVimQis1oNiRnu97edS9r9KFadGu3ii8rrlQuJM2BR4rtKOM67x3aqnfNUrtNxWi1Hav6M1bM8F3GR3b1jO63-f_QN7NybIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560492</pqid></control><display><type>article</type><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><source>Springer Link</source><creator>Izvarina, N. R. ; Savin, A. Yu</creator><creatorcontrib>Izvarina, N. R. ; Savin, A. Yu</creatorcontrib><description>Relative elliptic theory is a theory of elliptic operators for pairs
of closed smooth manifolds, where
is a submanifold in
. We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222130170</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Fixed points (mathematics) ; Geometry ; Manifolds (mathematics) ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2022-10, Vol.43 (10), p.2675-2684</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Izvarina, N. R.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Relative elliptic theory is a theory of elliptic operators for pairs
of closed smooth manifolds, where
is a submanifold in
. We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fixed points (mathematics)</subject><subject>Geometry</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4G7A9WiSmSRzl7XWHxgQtK6HTHpjp0w7Y5KKdeU7-IY-iSkVXIirc-F851w4hJwyes5Yll88MgBBC8o5Zxlliu6RAStYkQJIvh_vaKdb_5Aceb-gEZRSDsjVaJWMQrPR86-Pz8suhCglWm_mGN6T6Rw7h8vEdi55wFaH5hWTSds2fWhMMu6WfYtv6I_JgdWtx5MfHZKn68l0fJuW9zd341GZGgZFSI2ohQaaG45C0UxSXddGG8MLCnLGrZDGKFUj1DOlrBagKRQAVimQis1oNiRnu97edS9r9KFadGu3ii8rrlQuJM2BR4rtKOM67x3aqnfNUrtNxWi1Hav6M1bM8F3GR3b1jO63-f_QN7NybIk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Izvarina, N. R.</creator><creator>Savin, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</title><author>Izvarina, N. R. ; Savin, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fixed points (mathematics)</topic><topic>Geometry</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izvarina, N. R.</creatorcontrib><creatorcontrib>Savin, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izvarina, N. R.</au><au>Savin, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>43</volume><issue>10</issue><spage>2675</spage><epage>2684</epage><pages>2675-2684</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Relative elliptic theory is a theory of elliptic operators for pairs
of closed smooth manifolds, where
is a submanifold in
. We consider geometric endomorphisms of complexes in this theory and prove an analogue of Atiyah–Bott–Lefschetz fixed-point formula for such endomorphisms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222130170</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2022-10, Vol.43 (10), p.2675-2684 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2774560492 |
source | Springer Link |
subjects | Algebra Analysis Fixed points (mathematics) Geometry Manifolds (mathematics) Mathematical Logic and Foundations Mathematics Mathematics and Statistics Operators (mathematics) Probability Theory and Stochastic Processes |
title | An Atiyah–Bott–Lefschetz Theorem for Relative Elliptic Complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Atiyah%E2%80%93Bott%E2%80%93Lefschetz%20Theorem%20for%20Relative%20Elliptic%20Complexes&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Izvarina,%20N.%20R.&rft.date=2022-10-01&rft.volume=43&rft.issue=10&rft.spage=2675&rft.epage=2684&rft.pages=2675-2684&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222130170&rft_dat=%3Cproquest_cross%3E2774560492%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-c5b5a904c2e570360abbcacc28096d2f56cc77be9bd77fa59a09899f779671d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774560492&rft_id=info:pmid/&rfr_iscdi=true |