Loading…
Adaptive Massively Parallel Connectivity in Optimal Space
We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in \(O(\log^* n)\) rounds in forests (with high probability) and \(2^{O...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Latypov, Rustam Łącki, Jakub Maus, Yannic Uitto, Jara |
description | We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in \(O(\log^* n)\) rounds in forests (with high probability) and \(2^{O(\log^* n)}\) expected rounds in general graphs. This improves upon an existing \(O(\log \log_{m/n} n)\) round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using \(\Theta(m + n \log^{(k)} n)\) total space in expectation (in each round), where \(k\) is an arbitrarily large constant and \(\log^{(k)}\) is the \(k\)-th iterate of the \(\log_2\) function. This improves upon existing algorithms requiring \(\Omega(m + n \log n)\) total space. |
doi_str_mv | 10.48550/arxiv.2302.04033 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2774720916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774720916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-ebf9a57b32f2f56ce4b65c98dd58157a0989b91f414ced3080a1b9d920a7ca4a3</originalsourceid><addsrcrecordid>eNotjctqwzAQRUWhkJDmA7ITdG13NJIsaRlMX5CQQrMPY1kGB9V2LSc0f19DuzqLe7iHsY2AXFmt4YnGn_aaowTMQYGUd2yJUorMKsQFW6d0BgAsDGotl8xtaxqm9hr4nlKaGW_8g0aKMURe9l0X_Ly20423HT_M5hdF_jmQDw_svqGYwvqfK3Z8eT6Wb9nu8PpebncZOS2zUDWOtKkkNtjowgdVFdo7W9faCm0InHWVE40SyodaggUSlasdAhlPiuSKPf7dDmP_fQlpOp37y9jNxRMaowyCE4X8BSBWSGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774720916</pqid></control><display><type>article</type><title>Adaptive Massively Parallel Connectivity in Optimal Space</title><source>Publicly Available Content Database</source><creator>Latypov, Rustam ; Łącki, Jakub ; Maus, Yannic ; Uitto, Jara</creator><creatorcontrib>Latypov, Rustam ; Łącki, Jakub ; Maus, Yannic ; Uitto, Jara</creatorcontrib><description>We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in \(O(\log^* n)\) rounds in forests (with high probability) and \(2^{O(\log^* n)}\) expected rounds in general graphs. This improves upon an existing \(O(\log \log_{m/n} n)\) round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using \(\Theta(m + n \log^{(k)} n)\) total space in expectation (in each round), where \(k\) is an arbitrarily large constant and \(\log^{(k)}\) is the \(k\)-th iterate of the \(\log_2\) function. This improves upon existing algorithms requiring \(\Omega(m + n \log n)\) total space.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2302.04033</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Parallel processing</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2774720916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Latypov, Rustam</creatorcontrib><creatorcontrib>Łącki, Jakub</creatorcontrib><creatorcontrib>Maus, Yannic</creatorcontrib><creatorcontrib>Uitto, Jara</creatorcontrib><title>Adaptive Massively Parallel Connectivity in Optimal Space</title><title>arXiv.org</title><description>We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in \(O(\log^* n)\) rounds in forests (with high probability) and \(2^{O(\log^* n)}\) expected rounds in general graphs. This improves upon an existing \(O(\log \log_{m/n} n)\) round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using \(\Theta(m + n \log^{(k)} n)\) total space in expectation (in each round), where \(k\) is an arbitrarily large constant and \(\log^{(k)}\) is the \(k\)-th iterate of the \(\log_2\) function. This improves upon existing algorithms requiring \(\Omega(m + n \log n)\) total space.</description><subject>Algorithms</subject><subject>Parallel processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAQRUWhkJDmA7ITdG13NJIsaRlMX5CQQrMPY1kGB9V2LSc0f19DuzqLe7iHsY2AXFmt4YnGn_aaowTMQYGUd2yJUorMKsQFW6d0BgAsDGotl8xtaxqm9hr4nlKaGW_8g0aKMURe9l0X_Ly20423HT_M5hdF_jmQDw_svqGYwvqfK3Z8eT6Wb9nu8PpebncZOS2zUDWOtKkkNtjowgdVFdo7W9faCm0InHWVE40SyodaggUSlasdAhlPiuSKPf7dDmP_fQlpOp37y9jNxRMaowyCE4X8BSBWSGQ</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>Latypov, Rustam</creator><creator>Łącki, Jakub</creator><creator>Maus, Yannic</creator><creator>Uitto, Jara</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230414</creationdate><title>Adaptive Massively Parallel Connectivity in Optimal Space</title><author>Latypov, Rustam ; Łącki, Jakub ; Maus, Yannic ; Uitto, Jara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-ebf9a57b32f2f56ce4b65c98dd58157a0989b91f414ced3080a1b9d920a7ca4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Latypov, Rustam</creatorcontrib><creatorcontrib>Łącki, Jakub</creatorcontrib><creatorcontrib>Maus, Yannic</creatorcontrib><creatorcontrib>Uitto, Jara</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latypov, Rustam</au><au>Łącki, Jakub</au><au>Maus, Yannic</au><au>Uitto, Jara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Massively Parallel Connectivity in Optimal Space</atitle><jtitle>arXiv.org</jtitle><date>2023-04-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in \(O(\log^* n)\) rounds in forests (with high probability) and \(2^{O(\log^* n)}\) expected rounds in general graphs. This improves upon an existing \(O(\log \log_{m/n} n)\) round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using \(\Theta(m + n \log^{(k)} n)\) total space in expectation (in each round), where \(k\) is an arbitrarily large constant and \(\log^{(k)}\) is the \(k\)-th iterate of the \(\log_2\) function. This improves upon existing algorithms requiring \(\Omega(m + n \log n)\) total space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2302.04033</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2774720916 |
source | Publicly Available Content Database |
subjects | Algorithms Parallel processing |
title | Adaptive Massively Parallel Connectivity in Optimal Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Massively%20Parallel%20Connectivity%20in%20Optimal%20Space&rft.jtitle=arXiv.org&rft.au=Latypov,%20Rustam&rft.date=2023-04-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2302.04033&rft_dat=%3Cproquest%3E2774720916%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-ebf9a57b32f2f56ce4b65c98dd58157a0989b91f414ced3080a1b9d920a7ca4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774720916&rft_id=info:pmid/&rfr_iscdi=true |