Loading…
Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation
In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challengin...
Saved in:
Published in: | Electronics (Basel) 2023-02, Vol.12 (3), p.533 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3 |
container_end_page | |
container_issue | 3 |
container_start_page | 533 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Dang, Thai-Viet Bui, Ngoc-Tam |
description | In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes. |
doi_str_mv | 10.3390/electronics12030533 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2774855969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743140489</galeid><sourcerecordid>A743140489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3</originalsourceid><addsrcrecordid>eNptUMtOwzAQjBBIVNAv4BKJc4ofcRwfS0UBqS0ShbPlOOvKJYmL7RT170kpBw7sZUfamVnNJMkNRhNKBbqDBnT0rrM6YIIoYpSeJSOCuMgEEeT8D75MxiFs0TAC05KiUSKXfRNtttaqgXTeN80hnblu75o-WtepJl1B_HL-I7tXAep0Da3qotUD2LTQRXVkpcb5dOkqO1i8usrFdKX2dvNzu04ujGoCjH_3VfI-f3ibPWWLl8fn2XSRaVrgmCmtsOBGVBVUoBhBBSYVYQLVtao0LgQopVldUg4cIcIMYC00zTUj3BS1oVfJ7cl3591nDyHKrev9ECBIwnleMiYKMbAmJ9ZmiCttZ1z0w2utamitdh2YIYOc8pziHOXlUUBPAu1dCB6M3HnbKn-QGMlj-_Kf9uk3Yot8hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774855969</pqid></control><display><type>article</type><title>Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation</title><source>Publicly Available Content (ProQuest)</source><creator>Dang, Thai-Viet ; Bui, Ngoc-Tam</creator><creatorcontrib>Dang, Thai-Viet ; Bui, Ngoc-Tam</creatorcontrib><description>In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12030533</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Autonomous navigation ; Cameras ; Classification ; Collision avoidance ; Computer networks ; Computer vision ; Control systems ; Datasets ; Deep learning ; Halls ; Image processing ; Image segmentation ; Machine vision ; Mobile computing ; Mobile robots ; Motion ; Neural networks ; Object recognition ; Obstacle avoidance ; Path planning ; Pixels ; Robot dynamics ; Robotics ; Robots ; Semantic segmentation ; Semantics ; Sensors ; Steering</subject><ispartof>Electronics (Basel), 2023-02, Vol.12 (3), p.533</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3</citedby><cites>FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3</cites><orcidid>0000-0003-0437-6104 ; 0000-0002-1496-2492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774855969/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774855969?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Dang, Thai-Viet</creatorcontrib><creatorcontrib>Bui, Ngoc-Tam</creatorcontrib><title>Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation</title><title>Electronics (Basel)</title><description>In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Cameras</subject><subject>Classification</subject><subject>Collision avoidance</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Halls</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine vision</subject><subject>Mobile computing</subject><subject>Mobile robots</subject><subject>Motion</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Obstacle avoidance</subject><subject>Path planning</subject><subject>Pixels</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Steering</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUMtOwzAQjBBIVNAv4BKJc4ofcRwfS0UBqS0ShbPlOOvKJYmL7RT170kpBw7sZUfamVnNJMkNRhNKBbqDBnT0rrM6YIIoYpSeJSOCuMgEEeT8D75MxiFs0TAC05KiUSKXfRNtttaqgXTeN80hnblu75o-WtepJl1B_HL-I7tXAep0Da3qotUD2LTQRXVkpcb5dOkqO1i8usrFdKX2dvNzu04ujGoCjH_3VfI-f3ibPWWLl8fn2XSRaVrgmCmtsOBGVBVUoBhBBSYVYQLVtao0LgQopVldUg4cIcIMYC00zTUj3BS1oVfJ7cl3591nDyHKrev9ECBIwnleMiYKMbAmJ9ZmiCttZ1z0w2utamitdh2YIYOc8pziHOXlUUBPAu1dCB6M3HnbKn-QGMlj-_Kf9uk3Yot8hA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Dang, Thai-Viet</creator><creator>Bui, Ngoc-Tam</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0437-6104</orcidid><orcidid>https://orcid.org/0000-0002-1496-2492</orcidid></search><sort><creationdate>20230201</creationdate><title>Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation</title><author>Dang, Thai-Viet ; Bui, Ngoc-Tam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Cameras</topic><topic>Classification</topic><topic>Collision avoidance</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Halls</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine vision</topic><topic>Mobile computing</topic><topic>Mobile robots</topic><topic>Motion</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Obstacle avoidance</topic><topic>Path planning</topic><topic>Pixels</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Thai-Viet</creatorcontrib><creatorcontrib>Bui, Ngoc-Tam</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Thai-Viet</au><au>Bui, Ngoc-Tam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>533</spage><pages>533-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In computer vision and mobile robotics, autonomous navigation is crucial. It enables the robot to navigate its environment, which consists primarily of obstacles and moving objects. Robot navigation employing impediment detections, such as walls and pillars, is not only essential but also challenging due to real-world complications. This study provides a real-time solution to the problem of obtaining hallway scenes from an exclusive image. The authors predict a dense scene using a multi-scale fully convolutional network (FCN). The output is an image with pixel-by-pixel predictions that can be used for various navigation strategies. In addition, a method for comparing the computational cost and precision of various FCN architectures using VGG-16 is introduced. The binary semantic segmentation and optimal obstacle avoidance navigation of autonomous mobile robots are two areas in which our method outperforms the methods of competing works. The authors successfully apply perspective correction to the segmented image in order to construct the frontal view of the general area, which identifies the available moving area. The optimal obstacle avoidance strategy is comprised primarily of collision-free path planning, reasonable processing time, and smooth steering with low steering angle changes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12030533</doi><orcidid>https://orcid.org/0000-0003-0437-6104</orcidid><orcidid>https://orcid.org/0000-0002-1496-2492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-02, Vol.12 (3), p.533 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2774855969 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Autonomous navigation Cameras Classification Collision avoidance Computer networks Computer vision Control systems Datasets Deep learning Halls Image processing Image segmentation Machine vision Mobile computing Mobile robots Motion Neural networks Object recognition Obstacle avoidance Path planning Pixels Robot dynamics Robotics Robots Semantic segmentation Semantics Sensors Steering |
title | Multi-Scale Fully Convolutional Network-Based Semantic Segmentation for Mobile Robot Navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Fully%20Convolutional%20Network-Based%20Semantic%20Segmentation%20for%20Mobile%20Robot%20Navigation&rft.jtitle=Electronics%20(Basel)&rft.au=Dang,%20Thai-Viet&rft.date=2023-02-01&rft.volume=12&rft.issue=3&rft.spage=533&rft.pages=533-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12030533&rft_dat=%3Cgale_proqu%3EA743140489%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-aca197f9bbebea520612b2590ddabc169eaac5d837e70025fe1c9c34c527f6df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774855969&rft_id=info:pmid/&rft_galeid=A743140489&rfr_iscdi=true |