Loading…
Risk allocation and financial intermediation
The classic Arrow–Debreu framework requires a very large number of specific securities to reach Pareto optimality. The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework while still obtaining Pareto optimality. In the fram...
Saved in:
Published in: | Mathematical social sciences 2022-11, Vol.120, p.78-84 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-ae5ca352d72804a9cb950b290e7ad2c740b82a0b1308e716f189b6cd03ad7e573 |
container_end_page | 84 |
container_issue | |
container_start_page | 78 |
container_title | Mathematical social sciences |
container_volume | 120 |
creator | Goussebaïle, Arnaud |
description | The classic Arrow–Debreu framework requires a very large number of specific securities to reach Pareto optimality. The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework while still obtaining Pareto optimality. In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation. Reaching Pareto optimality does not rest on a Law of Large Numbers approximation. The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.
•The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework than the classic Arrow–Debreu framework while still obtaining Pareto optimality.•In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation.•Reaching Pareto optimality does not rest on a Law of Large Numbers approximation.•The role of financial intermediation is complementary to the role of security derivatives and dynamic trading. |
doi_str_mv | 10.1016/j.mathsocsci.2022.09.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2774940344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489622000749</els_id><sourcerecordid>2774940344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-ae5ca352d72804a9cb950b290e7ad2c740b82a0b1308e716f189b6cd03ad7e573</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF7eoeDW1pNLm2SpgzcYEETXIU1STO0kY9IRfHszjuDS1Vmc7_8P50OowtBgwN3V2Kz1_JajycY3BAhpQDYA7AAtsOCyphiLQ7QoaFszIbtjdJLzCACcAF6gy2ef3ys9TdHo2cdQ6WCrwQcdjNdT5cPs0tpZ_7M8Q0eDnrI7_52n6PXu9mX5UK-e7h-X16vaUGBzrV1rNG2J5UQA09L0soWeSHBcW2I4g14QDT2mIBzH3YCF7DtjgWrLXcvpKbrY925S_Ni6PKsxblMoJxXhnEkGlLFCiT1lUsw5uUFtkl_r9KUwqJ0bNao_N2rnRoFUxU2J3uyjrnzx6V1ShXDBlEeTM7Oy0f9f8g14w3F-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774940344</pqid></control><display><type>article</type><title>Risk allocation and financial intermediation</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><creator>Goussebaïle, Arnaud</creator><creatorcontrib>Goussebaïle, Arnaud</creatorcontrib><description>The classic Arrow–Debreu framework requires a very large number of specific securities to reach Pareto optimality. The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework while still obtaining Pareto optimality. In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation. Reaching Pareto optimality does not rest on a Law of Large Numbers approximation. The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.
•The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework than the classic Arrow–Debreu framework while still obtaining Pareto optimality.•In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation.•Reaching Pareto optimality does not rest on a Law of Large Numbers approximation.•The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2022.09.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Derivatives ; Financial intermediation ; General equilibrium ; Insurance ; Market completeness ; Pareto optimum ; Risk allocation ; Risk factors ; Securities ; Securities markets ; Securities trading</subject><ispartof>Mathematical social sciences, 2022-11, Vol.120, p.78-84</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Nov 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-ae5ca352d72804a9cb950b290e7ad2c740b82a0b1308e716f189b6cd03ad7e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33200</link.rule.ids></links><search><creatorcontrib>Goussebaïle, Arnaud</creatorcontrib><title>Risk allocation and financial intermediation</title><title>Mathematical social sciences</title><description>The classic Arrow–Debreu framework requires a very large number of specific securities to reach Pareto optimality. The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework while still obtaining Pareto optimality. In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation. Reaching Pareto optimality does not rest on a Law of Large Numbers approximation. The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.
•The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework than the classic Arrow–Debreu framework while still obtaining Pareto optimality.•In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation.•Reaching Pareto optimality does not rest on a Law of Large Numbers approximation.•The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.</description><subject>Derivatives</subject><subject>Financial intermediation</subject><subject>General equilibrium</subject><subject>Insurance</subject><subject>Market completeness</subject><subject>Pareto optimum</subject><subject>Risk allocation</subject><subject>Risk factors</subject><subject>Securities</subject><subject>Securities markets</subject><subject>Securities trading</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkMtKxDAUhoMoOF7eoeDW1pNLm2SpgzcYEETXIU1STO0kY9IRfHszjuDS1Vmc7_8P50OowtBgwN3V2Kz1_JajycY3BAhpQDYA7AAtsOCyphiLQ7QoaFszIbtjdJLzCACcAF6gy2ef3ys9TdHo2cdQ6WCrwQcdjNdT5cPs0tpZ_7M8Q0eDnrI7_52n6PXu9mX5UK-e7h-X16vaUGBzrV1rNG2J5UQA09L0soWeSHBcW2I4g14QDT2mIBzH3YCF7DtjgWrLXcvpKbrY925S_Ni6PKsxblMoJxXhnEkGlLFCiT1lUsw5uUFtkl_r9KUwqJ0bNao_N2rnRoFUxU2J3uyjrnzx6V1ShXDBlEeTM7Oy0f9f8g14w3F-</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Goussebaïle, Arnaud</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202211</creationdate><title>Risk allocation and financial intermediation</title><author>Goussebaïle, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-ae5ca352d72804a9cb950b290e7ad2c740b82a0b1308e716f189b6cd03ad7e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Derivatives</topic><topic>Financial intermediation</topic><topic>General equilibrium</topic><topic>Insurance</topic><topic>Market completeness</topic><topic>Pareto optimum</topic><topic>Risk allocation</topic><topic>Risk factors</topic><topic>Securities</topic><topic>Securities markets</topic><topic>Securities trading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goussebaïle, Arnaud</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goussebaïle, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk allocation and financial intermediation</atitle><jtitle>Mathematical social sciences</jtitle><date>2022-11</date><risdate>2022</risdate><volume>120</volume><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>The classic Arrow–Debreu framework requires a very large number of specific securities to reach Pareto optimality. The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework while still obtaining Pareto optimality. In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation. Reaching Pareto optimality does not rest on a Law of Large Numbers approximation. The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.
•The present paper shows that financial intermediation can play an important role in maintaining a more parsimonious market framework than the classic Arrow–Debreu framework while still obtaining Pareto optimality.•In the framework developed, the aggregate risk components of individual risks are exchanged through a highly reduced set of nonspecific securities, while the idiosyncratic risk components are insured through financial intermediation.•Reaching Pareto optimality does not rest on a Law of Large Numbers approximation.•The role of financial intermediation is complementary to the role of security derivatives and dynamic trading.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mathsocsci.2022.09.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-4896 |
ispartof | Mathematical social sciences, 2022-11, Vol.120, p.78-84 |
issn | 0165-4896 1879-3118 |
language | eng |
recordid | cdi_proquest_journals_2774940344 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection |
subjects | Derivatives Financial intermediation General equilibrium Insurance Market completeness Pareto optimum Risk allocation Risk factors Securities Securities markets Securities trading |
title | Risk allocation and financial intermediation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20allocation%20and%20financial%20intermediation&rft.jtitle=Mathematical%20social%20sciences&rft.au=Gousseba%C3%AFle,%20Arnaud&rft.date=2022-11&rft.volume=120&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2022.09.004&rft_dat=%3Cproquest_cross%3E2774940344%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-ae5ca352d72804a9cb950b290e7ad2c740b82a0b1308e716f189b6cd03ad7e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774940344&rft_id=info:pmid/&rfr_iscdi=true |