Loading…

Quality and Health Risk Assessment of Groundwater for Drinking and Irrigation Purpose in Semi-Arid Region of India Using Entropy Water Quality and Statistical Techniques

The continuous intake of contaminated drinking water causes serious issues for human health. In order to estimate the suitability of groundwater for drinking and irrigation, and also conduct human risk assessments of various groups of people, a total of 43 sample locations in the semi-arid southern...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2023-02, Vol.15 (3), p.601
Main Authors: Panneerselvam, Balamurugan, Ravichandran, Nagavinothini, Kaliyappan, Shunmuga Priya, Karuppannan, Shankar, Bidorn, Butsawan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuous intake of contaminated drinking water causes serious issues for human health. In order to estimate the suitability of groundwater for drinking and irrigation, and also conduct human risk assessments of various groups of people, a total of 43 sample locations in the semi-arid southern part of India were selected based on population density, and we collected and analyzed groundwater from the locations for major anions and cations. The present study’s novelty is integrating hydrochemical analysis with the entropy water quality index (EWQI), nitrate pollution index (NPI) and human health risk assessment. The results of the EWQI revealed that 44.19% of the sample locations need to be treated before consumption. About 37.20% of the study region has a high concentration of nitrate in the groundwater. NPI revealed that 41.86% of the samples had moderate or significant pollution levels. The non-carcinogenic risk evaluation showed that 6–12-year-old children are at a higher risk than teenagers, adults and elderly people in the study area. The natural sources of nitrate and other contamination of groundwater are rock–water interaction, weathering of rock, dissolution of carbonate minerals and evaporation processes, and the anthropogenic sources are the decomposition of organic substances in dumping yards, uncovered septic tanks and human and animal waste. The results suggest taking mitigation measures to reduce the contamination and improve the sustainable planning of groundwater management.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15030601