Loading…
AI Maintenance: A Robustness Perspective
In this article, we carve out artificial intelligence (AI) maintenance from the robustness perspective. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone towa...
Saved in:
Published in: | Computer (Long Beach, Calif.) Calif.), 2023-02, Vol.56 (2), p.48-56 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883 |
container_end_page | 56 |
container_issue | 2 |
container_start_page | 48 |
container_title | Computer (Long Beach, Calif.) |
container_volume | 56 |
creator | Chen, Pin-Yu Das, Payel |
description | In this article, we carve out artificial intelligence (AI) maintenance from the robustness perspective. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone toward building sustainable and trustworthy AI ecosystems. |
doi_str_mv | 10.1109/MC.2022.3218005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775103760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10042081</ieee_id><sourcerecordid>2775103760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFbXblwE3LhJeu9M5uWuBB-FFkV0PUyGG0jRpM4kgv_elHbh6nLgO-fCx9g1QoEIdrGpCg6cF4KjAZAnbIZSmhwMlqdsBoAmt6j4ObtIaTvF0kgxY3fLVbbxbTdQ57tA99kye-vrMQ0dpZS9Ukw7CkP7Q5fsrPGfia6Od84-Hh_eq-d8_fK0qpbrPAiBQ07WWwgUAhhtwXpTl1rxUmvPuQIQJvgp17xBwKCktCVITUYGr0ytjBFzdnvY3cX-e6Q0uG0_xm566bjWEkFoBRO1OFAh9ilFatwutl8-_joEt9fhNpXb63BHHVPj5tBoiegfDSWfFIk_SlxXtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775103760</pqid></control><display><type>article</type><title>AI Maintenance: A Robustness Perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Pin-Yu ; Das, Payel</creator><creatorcontrib>Chen, Pin-Yu ; Das, Payel</creatorcontrib><description>In this article, we carve out artificial intelligence (AI) maintenance from the robustness perspective. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone toward building sustainable and trustworthy AI ecosystems.</description><identifier>ISSN: 0018-9162</identifier><identifier>EISSN: 1558-0814</identifier><identifier>DOI: 10.1109/MC.2022.3218005</identifier><identifier>CODEN: CPTRB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Computational modeling ; Ecosystems ; Maintenance ; Proposals ; Risk management ; Robustness ; Sustainable development ; Tracking ; Trust computing</subject><ispartof>Computer (Long Beach, Calif.), 2023-02, Vol.56 (2), p.48-56</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883</citedby><cites>FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883</cites><orcidid>0000-0003-1039-8369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10042081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Chen, Pin-Yu</creatorcontrib><creatorcontrib>Das, Payel</creatorcontrib><title>AI Maintenance: A Robustness Perspective</title><title>Computer (Long Beach, Calif.)</title><addtitle>MC</addtitle><description>In this article, we carve out artificial intelligence (AI) maintenance from the robustness perspective. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone toward building sustainable and trustworthy AI ecosystems.</description><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Ecosystems</subject><subject>Maintenance</subject><subject>Proposals</subject><subject>Risk management</subject><subject>Robustness</subject><subject>Sustainable development</subject><subject>Tracking</subject><subject>Trust computing</subject><issn>0018-9162</issn><issn>1558-0814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsFbXblwE3LhJeu9M5uWuBB-FFkV0PUyGG0jRpM4kgv_elHbh6nLgO-fCx9g1QoEIdrGpCg6cF4KjAZAnbIZSmhwMlqdsBoAmt6j4ObtIaTvF0kgxY3fLVbbxbTdQ57tA99kye-vrMQ0dpZS9Ukw7CkP7Q5fsrPGfia6Od84-Hh_eq-d8_fK0qpbrPAiBQ07WWwgUAhhtwXpTl1rxUmvPuQIQJvgp17xBwKCktCVITUYGr0ytjBFzdnvY3cX-e6Q0uG0_xm566bjWEkFoBRO1OFAh9ilFatwutl8-_joEt9fhNpXb63BHHVPj5tBoiegfDSWfFIk_SlxXtQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chen, Pin-Yu</creator><creator>Das, Payel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1039-8369</orcidid></search><sort><creationdate>20230201</creationdate><title>AI Maintenance: A Robustness Perspective</title><author>Chen, Pin-Yu ; Das, Payel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Ecosystems</topic><topic>Maintenance</topic><topic>Proposals</topic><topic>Risk management</topic><topic>Robustness</topic><topic>Sustainable development</topic><topic>Tracking</topic><topic>Trust computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pin-Yu</creatorcontrib><creatorcontrib>Das, Payel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer (Long Beach, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pin-Yu</au><au>Das, Payel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI Maintenance: A Robustness Perspective</atitle><jtitle>Computer (Long Beach, Calif.)</jtitle><stitle>MC</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>56</volume><issue>2</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0018-9162</issn><eissn>1558-0814</eissn><coden>CPTRB4</coden><abstract>In this article, we carve out artificial intelligence (AI) maintenance from the robustness perspective. Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle, which is an essential milestone toward building sustainable and trustworthy AI ecosystems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MC.2022.3218005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1039-8369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9162 |
ispartof | Computer (Long Beach, Calif.), 2023-02, Vol.56 (2), p.48-56 |
issn | 0018-9162 1558-0814 |
language | eng |
recordid | cdi_proquest_journals_2775103760 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial intelligence Computational modeling Ecosystems Maintenance Proposals Risk management Robustness Sustainable development Tracking Trust computing |
title | AI Maintenance: A Robustness Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20Maintenance:%20A%20Robustness%20Perspective&rft.jtitle=Computer%20(Long%20Beach,%20Calif.)&rft.au=Chen,%20Pin-Yu&rft.date=2023-02-01&rft.volume=56&rft.issue=2&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0018-9162&rft.eissn=1558-0814&rft.coden=CPTRB4&rft_id=info:doi/10.1109/MC.2022.3218005&rft_dat=%3Cproquest_cross%3E2775103760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-e9a90cecc087909a8b4762477a2260038ca762b2f101c65594057e85ca68b6883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2775103760&rft_id=info:pmid/&rft_ieee_id=10042081&rfr_iscdi=true |