Loading…
Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform
Subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform are proposed and demonstrated. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for ap...
Saved in:
Published in: | Laser & photonics reviews 2023-02, Vol.17 (2), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 17 |
creator | Naraine, Cameron M. Westwood‐Bachman, Jocelyn N. Horvath, Cameron Aktary, Mirwais Knights, Andrew P. Schmid, Jens H. Cheben, Pavel Bradley, Jonathan D. B. |
description | Subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform are proposed and demonstrated. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for applications in evanescent field sensing and light amplification. The devices, which have critical dimensions greater than 100 nm, are fabricated using a commercial rapid turn‐around silicon nitride prototyping foundry process using electron beam lithography. Experimental characterization of the fabricated device reveals excellent ring resonator internal quality factor (2.11 × 105) and low propagation loss (≈1.5 dB cm−1) in the C‐band, a significant improvement of both parameters compared to silicon‐based SWG ring resonators. These results demonstrate the promising prospects of SWG metamaterial structures for silicon nitride based photonic integrated circuits.
Silicon nitride‐based subwavelength grating metamaterial waveguides and ring resonators are demonstrated. The devices are fabricated using a commercial rapid prototyping foundry process and exhibit an internal quality factor of 2.11 × 105 and propagation loss of ≈1.5 dB cm−1 in the C‐band. This opens promising prospects for subwavelength grating metamaterial engineering in silicon nitride integrated photonic devices. |
doi_str_mv | 10.1002/lpor.202200216 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775185016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775185016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtXzwHPrZOku5s9StEqVC2t4jHMZrM1Zbupya6l_96USj06l3nDfG8GHiHXDIYMgN_WG-eHHDiPA0tPSI_JVAykzPPTo5ZwTi5CWAEksdIeUYuu2OK3qU2zbD_pxGNrmyV9Ni2usTXeYk0_4n7Z2dIEik1J53tgboJrsHU-UNdQpAtbWx3Vi219JOmsxrZyfn1Jziqsg7n67X3y_nD_Nn4cTF8nT-O76UCLJEsHmqUZaAFQZrKoEBKRyQQLDrLAQkMmZDHiVZVoDVgYMcoZ41KKUgKClrISfXJzuLvx7qszoVUr1_kmvlQ8yxImE2BppIYHSnsXgjeV2ni7Rr9TDNQ-RLUPUR1DjIb8YNja2uz-odV09jr_8_4A-9h21w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775185016</pqid></control><display><type>article</type><title>Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Naraine, Cameron M. ; Westwood‐Bachman, Jocelyn N. ; Horvath, Cameron ; Aktary, Mirwais ; Knights, Andrew P. ; Schmid, Jens H. ; Cheben, Pavel ; Bradley, Jonathan D. B.</creator><creatorcontrib>Naraine, Cameron M. ; Westwood‐Bachman, Jocelyn N. ; Horvath, Cameron ; Aktary, Mirwais ; Knights, Andrew P. ; Schmid, Jens H. ; Cheben, Pavel ; Bradley, Jonathan D. B.</creatorcontrib><description>Subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform are proposed and demonstrated. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for applications in evanescent field sensing and light amplification. The devices, which have critical dimensions greater than 100 nm, are fabricated using a commercial rapid turn‐around silicon nitride prototyping foundry process using electron beam lithography. Experimental characterization of the fabricated device reveals excellent ring resonator internal quality factor (2.11 × 105) and low propagation loss (≈1.5 dB cm−1) in the C‐band, a significant improvement of both parameters compared to silicon‐based SWG ring resonators. These results demonstrate the promising prospects of SWG metamaterial structures for silicon nitride based photonic integrated circuits.
Silicon nitride‐based subwavelength grating metamaterial waveguides and ring resonators are demonstrated. The devices are fabricated using a commercial rapid prototyping foundry process and exhibit an internal quality factor of 2.11 × 105 and propagation loss of ≈1.5 dB cm−1 in the C‐band. This opens promising prospects for subwavelength grating metamaterial engineering in silicon nitride integrated photonic devices.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202200216</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electron beam lithography ; Integrated circuits ; integrated photonics ; Metamaterials ; Prototyping ; Resonators ; ring resonators ; Silicon nitride ; subwavelength gratings ; Waveguides</subject><ispartof>Laser & photonics reviews, 2023-02, Vol.17 (2), p.n/a</ispartof><rights>2022 The Authors. Laser & Photonics Reviews published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3</citedby><cites>FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3</cites><orcidid>0000-0001-5577-5290 ; 0000-0003-4232-9130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naraine, Cameron M.</creatorcontrib><creatorcontrib>Westwood‐Bachman, Jocelyn N.</creatorcontrib><creatorcontrib>Horvath, Cameron</creatorcontrib><creatorcontrib>Aktary, Mirwais</creatorcontrib><creatorcontrib>Knights, Andrew P.</creatorcontrib><creatorcontrib>Schmid, Jens H.</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Bradley, Jonathan D. B.</creatorcontrib><title>Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform</title><title>Laser & photonics reviews</title><description>Subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform are proposed and demonstrated. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for applications in evanescent field sensing and light amplification. The devices, which have critical dimensions greater than 100 nm, are fabricated using a commercial rapid turn‐around silicon nitride prototyping foundry process using electron beam lithography. Experimental characterization of the fabricated device reveals excellent ring resonator internal quality factor (2.11 × 105) and low propagation loss (≈1.5 dB cm−1) in the C‐band, a significant improvement of both parameters compared to silicon‐based SWG ring resonators. These results demonstrate the promising prospects of SWG metamaterial structures for silicon nitride based photonic integrated circuits.
Silicon nitride‐based subwavelength grating metamaterial waveguides and ring resonators are demonstrated. The devices are fabricated using a commercial rapid prototyping foundry process and exhibit an internal quality factor of 2.11 × 105 and propagation loss of ≈1.5 dB cm−1 in the C‐band. This opens promising prospects for subwavelength grating metamaterial engineering in silicon nitride integrated photonic devices.</description><subject>Electron beam lithography</subject><subject>Integrated circuits</subject><subject>integrated photonics</subject><subject>Metamaterials</subject><subject>Prototyping</subject><subject>Resonators</subject><subject>ring resonators</subject><subject>Silicon nitride</subject><subject>subwavelength gratings</subject><subject>Waveguides</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFLAzEQhYMoWKtXzwHPrZOku5s9StEqVC2t4jHMZrM1Zbupya6l_96USj06l3nDfG8GHiHXDIYMgN_WG-eHHDiPA0tPSI_JVAykzPPTo5ZwTi5CWAEksdIeUYuu2OK3qU2zbD_pxGNrmyV9Ni2usTXeYk0_4n7Z2dIEik1J53tgboJrsHU-UNdQpAtbWx3Vi219JOmsxrZyfn1Jziqsg7n67X3y_nD_Nn4cTF8nT-O76UCLJEsHmqUZaAFQZrKoEBKRyQQLDrLAQkMmZDHiVZVoDVgYMcoZ41KKUgKClrISfXJzuLvx7qszoVUr1_kmvlQ8yxImE2BppIYHSnsXgjeV2ni7Rr9TDNQ-RLUPUR1DjIb8YNja2uz-odV09jr_8_4A-9h21w</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Naraine, Cameron M.</creator><creator>Westwood‐Bachman, Jocelyn N.</creator><creator>Horvath, Cameron</creator><creator>Aktary, Mirwais</creator><creator>Knights, Andrew P.</creator><creator>Schmid, Jens H.</creator><creator>Cheben, Pavel</creator><creator>Bradley, Jonathan D. B.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5577-5290</orcidid><orcidid>https://orcid.org/0000-0003-4232-9130</orcidid></search><sort><creationdate>202302</creationdate><title>Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform</title><author>Naraine, Cameron M. ; Westwood‐Bachman, Jocelyn N. ; Horvath, Cameron ; Aktary, Mirwais ; Knights, Andrew P. ; Schmid, Jens H. ; Cheben, Pavel ; Bradley, Jonathan D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electron beam lithography</topic><topic>Integrated circuits</topic><topic>integrated photonics</topic><topic>Metamaterials</topic><topic>Prototyping</topic><topic>Resonators</topic><topic>ring resonators</topic><topic>Silicon nitride</topic><topic>subwavelength gratings</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naraine, Cameron M.</creatorcontrib><creatorcontrib>Westwood‐Bachman, Jocelyn N.</creatorcontrib><creatorcontrib>Horvath, Cameron</creatorcontrib><creatorcontrib>Aktary, Mirwais</creatorcontrib><creatorcontrib>Knights, Andrew P.</creatorcontrib><creatorcontrib>Schmid, Jens H.</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Bradley, Jonathan D. B.</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naraine, Cameron M.</au><au>Westwood‐Bachman, Jocelyn N.</au><au>Horvath, Cameron</au><au>Aktary, Mirwais</au><au>Knights, Andrew P.</au><au>Schmid, Jens H.</au><au>Cheben, Pavel</au><au>Bradley, Jonathan D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform</atitle><jtitle>Laser & photonics reviews</jtitle><date>2023-02</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Subwavelength grating (SWG) metamaterial waveguides and ring resonators on a silicon nitride platform are proposed and demonstrated. The SWG waveguide is engineered such that a large overlap of 53% of the Bloch mode with the top cladding material is achieved, demonstrating excellent potential for applications in evanescent field sensing and light amplification. The devices, which have critical dimensions greater than 100 nm, are fabricated using a commercial rapid turn‐around silicon nitride prototyping foundry process using electron beam lithography. Experimental characterization of the fabricated device reveals excellent ring resonator internal quality factor (2.11 × 105) and low propagation loss (≈1.5 dB cm−1) in the C‐band, a significant improvement of both parameters compared to silicon‐based SWG ring resonators. These results demonstrate the promising prospects of SWG metamaterial structures for silicon nitride based photonic integrated circuits.
Silicon nitride‐based subwavelength grating metamaterial waveguides and ring resonators are demonstrated. The devices are fabricated using a commercial rapid prototyping foundry process and exhibit an internal quality factor of 2.11 × 105 and propagation loss of ≈1.5 dB cm−1 in the C‐band. This opens promising prospects for subwavelength grating metamaterial engineering in silicon nitride integrated photonic devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202200216</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5577-5290</orcidid><orcidid>https://orcid.org/0000-0003-4232-9130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2023-02, Vol.17 (2), p.n/a |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_journals_2775185016 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Electron beam lithography Integrated circuits integrated photonics Metamaterials Prototyping Resonators ring resonators Silicon nitride subwavelength gratings Waveguides |
title | Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subwavelength%20Grating%20Metamaterial%20Waveguides%20and%20Ring%20Resonators%20on%20a%20Silicon%20Nitride%20Platform&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Naraine,%20Cameron%20M.&rft.date=2023-02&rft.volume=17&rft.issue=2&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202200216&rft_dat=%3Cproquest_cross%3E2775185016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3576-c1670c300d78bfa053785ab208babc0738b42ff5cc0abe349112883d80a0c88f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2775185016&rft_id=info:pmid/&rfr_iscdi=true |