Loading…

The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models

The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust versi...

Full description

Saved in:
Bibliographic Details
Published in:Statistics (Berlin, DDR) DDR), 2023-01, Vol.57 (1), p.1-25
Main Authors: Pandhare, S. C., Ramanathan, T. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203
container_end_page 25
container_issue 1
container_start_page 1
container_title Statistics (Berlin, DDR)
container_volume 57
creator Pandhare, S. C.
Ramanathan, T. V.
description The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.
doi_str_mv 10.1080/02331888.2022.2154769
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2775895314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775895314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</originalsourceid><addsrcrecordid>eNp9kElLA0EQhRtRMEZ_gtDgeWIvs96U4AYBL_Hc1PSSdJhMx-oZRH-9PSRePVXxeO9R9RFyy9mCs5rdMyElr-t6IZgQC8GLvCqbMzLjTDRZ3nB2TmaTJ5tMl-Qqxh1jrJSymhFcby3F0I5xoMbGA2D0zltDO4gxUOgNHZLDBT3GpPreBdzD4ENPNfrB4rQljW79ZpsZv7d9TBJ0dGN7i9D5n6nM9xaQ7oOxXbwmFw66aG9Oc04-np_Wy9ds9f7ytnxcZVqUcsjqilkroIC8grYxwDlvTOFE2UKefuS5bOvcCFnzQraVaXVbal4yqJyW1ggm5-Tu2HvA8DnaOKhdGDGdFpWoqqJuCplK5qQ4ujSGGNE6dUC_B_xWnKkJr_rDqya86oQ35R6OuROSr4CdUQN8dwEdQq99VPL_il_M74OB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775895314</pqid></control><display><type>article</type><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pandhare, S. C. ; Ramanathan, T. V.</creator><creatorcontrib>Pandhare, S. C. ; Ramanathan, T. V.</creatorcontrib><description>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2022.2154769</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Criteria ; Desparsified lasso ; focused information criterion ; generalized linear models ; high-dimensional asymptotics ; nodewise regression ; Outliers (statistics) ; Regression models ; robust estimation ; Robustness (mathematics) ; Statistical models</subject><ispartof>Statistics (Berlin, DDR), 2023-01, Vol.57 (1), p.1-25</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</cites><orcidid>0000-0002-8447-6692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pandhare, S. C.</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><title>Statistics (Berlin, DDR)</title><description>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</description><subject>Criteria</subject><subject>Desparsified lasso</subject><subject>focused information criterion</subject><subject>generalized linear models</subject><subject>high-dimensional asymptotics</subject><subject>nodewise regression</subject><subject>Outliers (statistics)</subject><subject>Regression models</subject><subject>robust estimation</subject><subject>Robustness (mathematics)</subject><subject>Statistical models</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kElLA0EQhRtRMEZ_gtDgeWIvs96U4AYBL_Hc1PSSdJhMx-oZRH-9PSRePVXxeO9R9RFyy9mCs5rdMyElr-t6IZgQC8GLvCqbMzLjTDRZ3nB2TmaTJ5tMl-Qqxh1jrJSymhFcby3F0I5xoMbGA2D0zltDO4gxUOgNHZLDBT3GpPreBdzD4ENPNfrB4rQljW79ZpsZv7d9TBJ0dGN7i9D5n6nM9xaQ7oOxXbwmFw66aG9Oc04-np_Wy9ds9f7ytnxcZVqUcsjqilkroIC8grYxwDlvTOFE2UKefuS5bOvcCFnzQraVaXVbal4yqJyW1ggm5-Tu2HvA8DnaOKhdGDGdFpWoqqJuCplK5qQ4ujSGGNE6dUC_B_xWnKkJr_rDqya86oQ35R6OuROSr4CdUQN8dwEdQq99VPL_il_M74OB</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Pandhare, S. C.</creator><creator>Ramanathan, T. V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8447-6692</orcidid></search><sort><creationdate>20230102</creationdate><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><author>Pandhare, S. C. ; Ramanathan, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Criteria</topic><topic>Desparsified lasso</topic><topic>focused information criterion</topic><topic>generalized linear models</topic><topic>high-dimensional asymptotics</topic><topic>nodewise regression</topic><topic>Outliers (statistics)</topic><topic>Regression models</topic><topic>robust estimation</topic><topic>Robustness (mathematics)</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandhare, S. C.</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandhare, S. C.</au><au>Ramanathan, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02331888.2022.2154769</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8447-6692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 2023-01, Vol.57 (1), p.1-25
issn 0233-1888
1029-4910
language eng
recordid cdi_proquest_journals_2775895314
source Taylor and Francis Science and Technology Collection
subjects Criteria
Desparsified lasso
focused information criterion
generalized linear models
high-dimensional asymptotics
nodewise regression
Outliers (statistics)
Regression models
robust estimation
Robustness (mathematics)
Statistical models
title The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20robust%20desparsified%20lasso%20and%20the%20focused%20information%20criterion%20for%20high-dimensional%20generalized%20linear%20models&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Pandhare,%20S.%20C.&rft.date=2023-01-02&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2022.2154769&rft_dat=%3Cproquest_infor%3E2775895314%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2775895314&rft_id=info:pmid/&rfr_iscdi=true