Loading…
The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models
The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust versi...
Saved in:
Published in: | Statistics (Berlin, DDR) DDR), 2023-01, Vol.57 (1), p.1-25 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203 |
container_end_page | 25 |
container_issue | 1 |
container_start_page | 1 |
container_title | Statistics (Berlin, DDR) |
container_volume | 57 |
creator | Pandhare, S. C. Ramanathan, T. V. |
description | The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example. |
doi_str_mv | 10.1080/02331888.2022.2154769 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2775895314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775895314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</originalsourceid><addsrcrecordid>eNp9kElLA0EQhRtRMEZ_gtDgeWIvs96U4AYBL_Hc1PSSdJhMx-oZRH-9PSRePVXxeO9R9RFyy9mCs5rdMyElr-t6IZgQC8GLvCqbMzLjTDRZ3nB2TmaTJ5tMl-Qqxh1jrJSymhFcby3F0I5xoMbGA2D0zltDO4gxUOgNHZLDBT3GpPreBdzD4ENPNfrB4rQljW79ZpsZv7d9TBJ0dGN7i9D5n6nM9xaQ7oOxXbwmFw66aG9Oc04-np_Wy9ds9f7ytnxcZVqUcsjqilkroIC8grYxwDlvTOFE2UKefuS5bOvcCFnzQraVaXVbal4yqJyW1ggm5-Tu2HvA8DnaOKhdGDGdFpWoqqJuCplK5qQ4ujSGGNE6dUC_B_xWnKkJr_rDqya86oQ35R6OuROSr4CdUQN8dwEdQq99VPL_il_M74OB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775895314</pqid></control><display><type>article</type><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pandhare, S. C. ; Ramanathan, T. V.</creator><creatorcontrib>Pandhare, S. C. ; Ramanathan, T. V.</creatorcontrib><description>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2022.2154769</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Criteria ; Desparsified lasso ; focused information criterion ; generalized linear models ; high-dimensional asymptotics ; nodewise regression ; Outliers (statistics) ; Regression models ; robust estimation ; Robustness (mathematics) ; Statistical models</subject><ispartof>Statistics (Berlin, DDR), 2023-01, Vol.57 (1), p.1-25</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</cites><orcidid>0000-0002-8447-6692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pandhare, S. C.</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><title>Statistics (Berlin, DDR)</title><description>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</description><subject>Criteria</subject><subject>Desparsified lasso</subject><subject>focused information criterion</subject><subject>generalized linear models</subject><subject>high-dimensional asymptotics</subject><subject>nodewise regression</subject><subject>Outliers (statistics)</subject><subject>Regression models</subject><subject>robust estimation</subject><subject>Robustness (mathematics)</subject><subject>Statistical models</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kElLA0EQhRtRMEZ_gtDgeWIvs96U4AYBL_Hc1PSSdJhMx-oZRH-9PSRePVXxeO9R9RFyy9mCs5rdMyElr-t6IZgQC8GLvCqbMzLjTDRZ3nB2TmaTJ5tMl-Qqxh1jrJSymhFcby3F0I5xoMbGA2D0zltDO4gxUOgNHZLDBT3GpPreBdzD4ENPNfrB4rQljW79ZpsZv7d9TBJ0dGN7i9D5n6nM9xaQ7oOxXbwmFw66aG9Oc04-np_Wy9ds9f7ytnxcZVqUcsjqilkroIC8grYxwDlvTOFE2UKefuS5bOvcCFnzQraVaXVbal4yqJyW1ggm5-Tu2HvA8DnaOKhdGDGdFpWoqqJuCplK5qQ4ujSGGNE6dUC_B_xWnKkJr_rDqya86oQ35R6OuROSr4CdUQN8dwEdQq99VPL_il_M74OB</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Pandhare, S. C.</creator><creator>Ramanathan, T. V.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8447-6692</orcidid></search><sort><creationdate>20230102</creationdate><title>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</title><author>Pandhare, S. C. ; Ramanathan, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Criteria</topic><topic>Desparsified lasso</topic><topic>focused information criterion</topic><topic>generalized linear models</topic><topic>high-dimensional asymptotics</topic><topic>nodewise regression</topic><topic>Outliers (statistics)</topic><topic>Regression models</topic><topic>robust estimation</topic><topic>Robustness (mathematics)</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandhare, S. C.</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandhare, S. C.</au><au>Ramanathan, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>The classical lasso estimation for sparse, high-dimensional regression models is typically biased and lacks the oracle properties. The desparsified versions of the lasso have been proposed in the literature that attempt to overcome these drawbacks. In this paper, we propose the outliers-robust version of the desparsified lasso for high dimensional generalized linear models. The robustness, consistency and high dimensional asymptotics are investigated rigorously in a general framework of M-estimation under potential model misspecification. The desparsification mechanism is subsequently utilized to construct the focused information criterion (FIC) thereby facilitating robust, focused model selection in high dimensions. The applications are demonstrated with the Poisson regression under robust quasilikelihood loss function. The empirical performance of the proposed methods is examined via simulations and a real data example.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02331888.2022.2154769</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8447-6692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0233-1888 |
ispartof | Statistics (Berlin, DDR), 2023-01, Vol.57 (1), p.1-25 |
issn | 0233-1888 1029-4910 |
language | eng |
recordid | cdi_proquest_journals_2775895314 |
source | Taylor and Francis Science and Technology Collection |
subjects | Criteria Desparsified lasso focused information criterion generalized linear models high-dimensional asymptotics nodewise regression Outliers (statistics) Regression models robust estimation Robustness (mathematics) Statistical models |
title | The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20robust%20desparsified%20lasso%20and%20the%20focused%20information%20criterion%20for%20high-dimensional%20generalized%20linear%20models&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Pandhare,%20S.%20C.&rft.date=2023-01-02&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2022.2154769&rft_dat=%3Cproquest_infor%3E2775895314%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-870ee2a5a47ab9da1119d5f26ba4215143b84d238153b7dbcb6c160a7fc3ed203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2775895314&rft_id=info:pmid/&rfr_iscdi=true |