Loading…

Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)

In this paper, we look at the question of when various ideals in the Fourier algebra \(A(G)\) or its closures \(A_M(G)\) and \(A_{cb}(G)\) in, respectively, its multiplier and \(cb\)-multiplier algebra are Arens regular. We show that in each case, if a non-zero ideal is Arens regular, then the under...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-02
Main Authors: rest, Brian, Sawatzky, John, Thamizhazhagan, Aasaimani
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator rest, Brian
Sawatzky, John
Thamizhazhagan, Aasaimani
description In this paper, we look at the question of when various ideals in the Fourier algebra \(A(G)\) or its closures \(A_M(G)\) and \(A_{cb}(G)\) in, respectively, its multiplier and \(cb\)-multiplier algebra are Arens regular. We show that in each case, if a non-zero ideal is Arens regular, then the underlying group \(G\) must be discrete. In addition, we show that if an ideal \(I\) in \(A(G)\) has a bounded approximate identity, then it is Arens regular if and only if it is finite-dimensional.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2776280962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776280962</sourcerecordid><originalsourceid>FETCH-proquest_journals_27762809623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcSxKzStWKEpNL81JLMosqVTIT1PITElNzClWyMxTiNFw1HDXjNHUAbHiq5OTasFchcS8FLCIL5jLw8CaBtSQyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFG5uZmRhYGlmZGxsSpAgBf8TZX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776280962</pqid></control><display><type>article</type><title>Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)</title><source>Publicly Available Content Database</source><creator>rest, Brian ; Sawatzky, John ; Thamizhazhagan, Aasaimani</creator><creatorcontrib>rest, Brian ; Sawatzky, John ; Thamizhazhagan, Aasaimani</creatorcontrib><description>In this paper, we look at the question of when various ideals in the Fourier algebra \(A(G)\) or its closures \(A_M(G)\) and \(A_{cb}(G)\) in, respectively, its multiplier and \(cb\)-multiplier algebra are Arens regular. We show that in each case, if a non-zero ideal is Arens regular, then the underlying group \(G\) must be discrete. In addition, we show that if an ideal \(I\) in \(A(G)\) has a bounded approximate identity, then it is Arens regular if and only if it is finite-dimensional.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multipliers</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2776280962?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>rest, Brian</creatorcontrib><creatorcontrib>Sawatzky, John</creatorcontrib><creatorcontrib>Thamizhazhagan, Aasaimani</creatorcontrib><title>Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)</title><title>arXiv.org</title><description>In this paper, we look at the question of when various ideals in the Fourier algebra \(A(G)\) or its closures \(A_M(G)\) and \(A_{cb}(G)\) in, respectively, its multiplier and \(cb\)-multiplier algebra are Arens regular. We show that in each case, if a non-zero ideal is Arens regular, then the underlying group \(G\) must be discrete. In addition, we show that if an ideal \(I\) in \(A(G)\) has a bounded approximate identity, then it is Arens regular if and only if it is finite-dimensional.</description><subject>Multipliers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcSxKzStWKEpNL81JLMosqVTIT1PITElNzClWyMxTiNFw1HDXjNHUAbHiq5OTasFchcS8FLCIL5jLw8CaBtSQyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFG5uZmRhYGlmZGxsSpAgBf8TZX</recordid><startdate>20230211</startdate><enddate>20230211</enddate><creator>rest, Brian</creator><creator>Sawatzky, John</creator><creator>Thamizhazhagan, Aasaimani</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230211</creationdate><title>Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)</title><author>rest, Brian ; Sawatzky, John ; Thamizhazhagan, Aasaimani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27762809623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Multipliers</topic><toplevel>online_resources</toplevel><creatorcontrib>rest, Brian</creatorcontrib><creatorcontrib>Sawatzky, John</creatorcontrib><creatorcontrib>Thamizhazhagan, Aasaimani</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>rest, Brian</au><au>Sawatzky, John</au><au>Thamizhazhagan, Aasaimani</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)</atitle><jtitle>arXiv.org</jtitle><date>2023-02-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we look at the question of when various ideals in the Fourier algebra \(A(G)\) or its closures \(A_M(G)\) and \(A_{cb}(G)\) in, respectively, its multiplier and \(cb\)-multiplier algebra are Arens regular. We show that in each case, if a non-zero ideal is Arens regular, then the underlying group \(G\) must be discrete. In addition, we show that if an ideal \(I\) in \(A(G)\) has a bounded approximate identity, then it is Arens regular if and only if it is finite-dimensional.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2776280962
source Publicly Available Content Database
subjects Multipliers
title Arens regularity of ideals in \(A(G)\), \(A_{cb}(G)\) and \(A_M(G)\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Arens%20regularity%20of%20ideals%20in%20%5C(A(G)%5C),%20%5C(A_%7Bcb%7D(G)%5C)%20and%20%5C(A_M(G)%5C)&rft.jtitle=arXiv.org&rft.au=rest,%20Brian&rft.date=2023-02-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2776280962%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27762809623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2776280962&rft_id=info:pmid/&rfr_iscdi=true