Loading…

ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals

As a promising technology in human–computer interface (HCI), deep learning has good application prospects for gesture recognition from surface electromyography (sEMG) signals. However, mainstream network structures with satisfactory recognition accuracy are too complex to be deployed on edge devices...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2023-02, Vol.23 (4), p.4052-4059
Main Authors: Shen, Shu, Wang, Xuebin, Wu, Mengshi, Gu, Kang, Chen, Xinrong, Geng, Xinyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823
cites cdi_FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823
container_end_page 4059
container_issue 4
container_start_page 4052
container_title IEEE sensors journal
container_volume 23
creator Shen, Shu
Wang, Xuebin
Wu, Mengshi
Gu, Kang
Chen, Xinrong
Geng, Xinyu
description As a promising technology in human–computer interface (HCI), deep learning has good application prospects for gesture recognition from surface electromyography (sEMG) signals. However, mainstream network structures with satisfactory recognition accuracy are too complex to be deployed on edge devices. The lightweight neural network tends to have difficulty in fulfilling the requirement of recognition accuracy with limited computing power. In order to make the neural network adapt to different applications as much as possible, we propose a flexible and modular method based on sEMG and acceleration signals for gesture recognition. Moreover, a lightweight convolutional neural network with the improved channel attention mechanism (ICA-CNN) can achieve satisfactory performance in recognition accuracy or inference speed for different applications. The experimental results show that the recognition accuracy of the proposed method on 49 gestures is 94.24% using sEMG and acceleration signals, much higher than the accuracy of the method only using sEMG signals. In addition, the single inference of the proposed method takes only 38.6 ms on the CPU.
doi_str_mv 10.1109/JSEN.2023.3236682
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2776794821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776794821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcfwLeAz5350yapb6PMbbJNcA59CzFNu4w2nU0r-O1N3V7uudx7uJz7A-AeownGKH182c42E4IInVBCGRPkAoxwkogI81hcDj1FUUz55zW48f6AEE55wkegXGbTKNtsnuDc-K5vDXwzuimd7Wzj4M5bV8Kwhh-228NlfWybH5PDbK-cMxWcdp1x_8610WFmfQ2Vy-G6rzpbN7mq4NaWTlX-FlwVQczdWcdg9zx7zxbR6nUeIqwiTRDtIk4LLDBLU62pNjhmBBnKFaKJZjnHhSmU0qnQIlSG4i-UM24UKijRgiFB6Bg8nO6GpN99eEkemr4dEkjCOeNpLAgOLnxy6bbxvjWFPLa2Vu2vxEgOPOXAUw485Zkn_QODhGf2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776794821</pqid></control><display><type>article</type><title>ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals</title><source>IEEE Xplore (Online service)</source><creator>Shen, Shu ; Wang, Xuebin ; Wu, Mengshi ; Gu, Kang ; Chen, Xinrong ; Geng, Xinyu</creator><creatorcontrib>Shen, Shu ; Wang, Xuebin ; Wu, Mengshi ; Gu, Kang ; Chen, Xinrong ; Geng, Xinyu</creatorcontrib><description>As a promising technology in human–computer interface (HCI), deep learning has good application prospects for gesture recognition from surface electromyography (sEMG) signals. However, mainstream network structures with satisfactory recognition accuracy are too complex to be deployed on edge devices. The lightweight neural network tends to have difficulty in fulfilling the requirement of recognition accuracy with limited computing power. In order to make the neural network adapt to different applications as much as possible, we propose a flexible and modular method based on sEMG and acceleration signals for gesture recognition. Moreover, a lightweight convolutional neural network with the improved channel attention mechanism (ICA-CNN) can achieve satisfactory performance in recognition accuracy or inference speed for different applications. The experimental results show that the recognition accuracy of the proposed method on 49 gestures is 94.24% using sEMG and acceleration signals, much higher than the accuracy of the method only using sEMG signals. In addition, the single inference of the proposed method takes only 38.6 ms on the CPU.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3236682</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Acceleration ; Accuracy ; Artificial neural networks ; Electromyography ; Gesture recognition ; Human-computer interface ; Inference ; Lightweight ; Machine learning ; Neural networks</subject><ispartof>IEEE sensors journal, 2023-02, Vol.23 (4), p.4052-4059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823</citedby><cites>FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823</cites><orcidid>0000-0001-8541-6205 ; 0000-0003-3888-2427 ; 0000-0001-9751-3387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Shu</creatorcontrib><creatorcontrib>Wang, Xuebin</creatorcontrib><creatorcontrib>Wu, Mengshi</creatorcontrib><creatorcontrib>Gu, Kang</creatorcontrib><creatorcontrib>Chen, Xinrong</creatorcontrib><creatorcontrib>Geng, Xinyu</creatorcontrib><title>ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals</title><title>IEEE sensors journal</title><description>As a promising technology in human–computer interface (HCI), deep learning has good application prospects for gesture recognition from surface electromyography (sEMG) signals. However, mainstream network structures with satisfactory recognition accuracy are too complex to be deployed on edge devices. The lightweight neural network tends to have difficulty in fulfilling the requirement of recognition accuracy with limited computing power. In order to make the neural network adapt to different applications as much as possible, we propose a flexible and modular method based on sEMG and acceleration signals for gesture recognition. Moreover, a lightweight convolutional neural network with the improved channel attention mechanism (ICA-CNN) can achieve satisfactory performance in recognition accuracy or inference speed for different applications. The experimental results show that the recognition accuracy of the proposed method on 49 gestures is 94.24% using sEMG and acceleration signals, much higher than the accuracy of the method only using sEMG signals. In addition, the single inference of the proposed method takes only 38.6 ms on the CPU.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Electromyography</subject><subject>Gesture recognition</subject><subject>Human-computer interface</subject><subject>Inference</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Neural networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkF9LwzAUxYMoOKcfwLeAz5350yapb6PMbbJNcA59CzFNu4w2nU0r-O1N3V7uudx7uJz7A-AeownGKH182c42E4IInVBCGRPkAoxwkogI81hcDj1FUUz55zW48f6AEE55wkegXGbTKNtsnuDc-K5vDXwzuimd7Wzj4M5bV8Kwhh-228NlfWybH5PDbK-cMxWcdp1x_8610WFmfQ2Vy-G6rzpbN7mq4NaWTlX-FlwVQczdWcdg9zx7zxbR6nUeIqwiTRDtIk4LLDBLU62pNjhmBBnKFaKJZjnHhSmU0qnQIlSG4i-UM24UKijRgiFB6Bg8nO6GpN99eEkemr4dEkjCOeNpLAgOLnxy6bbxvjWFPLa2Vu2vxEgOPOXAUw485Zkn_QODhGf2</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Shen, Shu</creator><creator>Wang, Xuebin</creator><creator>Wu, Mengshi</creator><creator>Gu, Kang</creator><creator>Chen, Xinrong</creator><creator>Geng, Xinyu</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8541-6205</orcidid><orcidid>https://orcid.org/0000-0003-3888-2427</orcidid><orcidid>https://orcid.org/0000-0001-9751-3387</orcidid></search><sort><creationdate>20230215</creationdate><title>ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals</title><author>Shen, Shu ; Wang, Xuebin ; Wu, Mengshi ; Gu, Kang ; Chen, Xinrong ; Geng, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Electromyography</topic><topic>Gesture recognition</topic><topic>Human-computer interface</topic><topic>Inference</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Shu</creatorcontrib><creatorcontrib>Wang, Xuebin</creatorcontrib><creatorcontrib>Wu, Mengshi</creatorcontrib><creatorcontrib>Gu, Kang</creatorcontrib><creatorcontrib>Chen, Xinrong</creatorcontrib><creatorcontrib>Geng, Xinyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Shu</au><au>Wang, Xuebin</au><au>Wu, Mengshi</au><au>Gu, Kang</au><au>Chen, Xinrong</au><au>Geng, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals</atitle><jtitle>IEEE sensors journal</jtitle><date>2023-02-15</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>4052</spage><epage>4059</epage><pages>4052-4059</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><abstract>As a promising technology in human–computer interface (HCI), deep learning has good application prospects for gesture recognition from surface electromyography (sEMG) signals. However, mainstream network structures with satisfactory recognition accuracy are too complex to be deployed on edge devices. The lightweight neural network tends to have difficulty in fulfilling the requirement of recognition accuracy with limited computing power. In order to make the neural network adapt to different applications as much as possible, we propose a flexible and modular method based on sEMG and acceleration signals for gesture recognition. Moreover, a lightweight convolutional neural network with the improved channel attention mechanism (ICA-CNN) can achieve satisfactory performance in recognition accuracy or inference speed for different applications. The experimental results show that the recognition accuracy of the proposed method on 49 gestures is 94.24% using sEMG and acceleration signals, much higher than the accuracy of the method only using sEMG signals. In addition, the single inference of the proposed method takes only 38.6 ms on the CPU.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSEN.2023.3236682</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8541-6205</orcidid><orcidid>https://orcid.org/0000-0003-3888-2427</orcidid><orcidid>https://orcid.org/0000-0001-9751-3387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-02, Vol.23 (4), p.4052-4059
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2776794821
source IEEE Xplore (Online service)
subjects Acceleration
Accuracy
Artificial neural networks
Electromyography
Gesture recognition
Human-computer interface
Inference
Lightweight
Machine learning
Neural networks
title ICA-CNN: Gesture Recognition Using CNN With Improved Channel Attention Mechanism and Multimodal Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICA-CNN:%20Gesture%20Recognition%20Using%20CNN%20With%20Improved%20Channel%20Attention%20Mechanism%20and%20Multimodal%20Signals&rft.jtitle=IEEE%20sensors%20journal&rft.au=Shen,%20Shu&rft.date=2023-02-15&rft.volume=23&rft.issue=4&rft.spage=4052&rft.epage=4059&rft.pages=4052-4059&rft.issn=1530-437X&rft.eissn=1558-1748&rft_id=info:doi/10.1109/JSEN.2023.3236682&rft_dat=%3Cproquest_cross%3E2776794821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c203t-73f181699cc3ce14620e37a035c6d71fefaac98c8ac9604b0d67ea0f32c860823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2776794821&rft_id=info:pmid/&rfr_iscdi=true