Loading…
TaFeB spacer for soft magnetic composite free layer in CoFeB/MgO/CoFeB-based magnetic tunnel junction
CoFeB/MgO/CoFeB-based magnetic tunnel junctions (MTJs) with a soft magnetic composite free layer have been developed for magnetic sensor applications. Tunnel magnetoresistance (TMR) ratios in the sensor-type MTJs have reached a ceiling due to a trade-off between the TMR ratio and interlayer exchange...
Saved in:
Published in: | Applied physics letters 2023-02, Vol.122 (7) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CoFeB/MgO/CoFeB-based magnetic tunnel junctions (MTJs) with a soft magnetic composite free layer have been developed for magnetic sensor applications. Tunnel magnetoresistance (TMR) ratios in the sensor-type MTJs have reached a ceiling due to a trade-off between the TMR ratio and interlayer exchange coupling (IEC) depending on the spacer thickness of the composite free layer. In this study, we developed a paramagnetic amorphous TaFeB-alloy spacer to replace the conventional Ta spacer and solve this trade-off. The TaFeB film showed a wider thickness window for a sufficient IEC, resulting in IEC energy values of 0.18–0.19 erg/cm2 at a thickness of 1.0 nm. In addition, we confirmed that the TaFeB film had an ability to function as a boron sink comparable to that of pure Ta. These characteristics allowed us to thicken the TaFeB spacer up to 1.0 nm in the sensor-type MTJs and attain an enhanced TMR ratio of up to 234%, which is the highest compared with cases using the conventional Ta spacer reported to date. These findings demonstrate that TaFeB alloy is a promising material for breaking the ceiling of sensor-type MTJs and increasing sensitivity. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0132866 |