Loading…
Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy
Aim: The study's aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component...
Saved in:
Published in: | Cardiometry 2022-12 (25), p.942-948 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 948 |
container_issue | 25 |
container_start_page | 942 |
container_title | Cardiometry |
container_volume | |
creator | Pokala, Venkata Sai Kumar Kumar, Neelam Sanjeev |
description | Aim: The study's aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p |
doi_str_mv | 10.18137/cardiometry.2022.25.942948 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777086713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777086713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-cdacb4a2f23bad6b4f50427b2d0a0c0b8aedc8236edcf09fb3b41bdc119aae943</originalsourceid><addsrcrecordid>eNpFj9lqwzAQRU2h0JDmHwR5tqstsf1o0i2Q0kKX1zBanCjYkivJCfmxfl8FLe3LXIY53MNk2ZzgglSElTcSvDKu19GfC4opLeiiqDmteXWRTSjDPC8po1fZLIQDxphQUmO2mGRfjYXuHExAYBWSrh_Am-Asap1Hg9fKyGjS6lp0a0DoaCR68XpnwUZ0SkKLxmDsDq2tdUeI5qjT3VhpBujQKvU5qxP6r-l2zpu475E7ao9ex2FwPqIPLWMyPoHcG6tR80ed0kTrfvAJV6iRcvQgz9fZZQtd0LPfnGbv93dvq8d88_ywXjWbXFJSxVwqkIIDbSkToJaCtwvMaSmowoAlFhVoJSvKlilaXLeCCU6EkoTUALrmbJrNf3qT_3PUIW4PbvTpl7ClZVnialkSxr4BWDh9GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777086713</pqid></control><display><type>article</type><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><source>Publicly Available Content (ProQuest)</source><creator>Pokala, Venkata Sai Kumar ; Kumar, Neelam Sanjeev</creator><creatorcontrib>Pokala, Venkata Sai Kumar ; Kumar, Neelam Sanjeev</creatorcontrib><description>Aim: The study's aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</description><identifier>EISSN: 2304-7232</identifier><identifier>DOI: 10.18137/cardiometry.2022.25.942948</identifier><language>eng</language><publisher>Moscow: Russian New University</publisher><subject>Accuracy ; Algorithms ; Diabetes ; Pregnancy ; Principal components analysis ; Support vector machines</subject><ispartof>Cardiometry, 2022-12 (25), p.942-948</ispartof><rights>2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2777086713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Pokala, Venkata Sai Kumar</creatorcontrib><creatorcontrib>Kumar, Neelam Sanjeev</creatorcontrib><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><title>Cardiometry</title><description>Aim: The study's aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Diabetes</subject><subject>Pregnancy</subject><subject>Principal components analysis</subject><subject>Support vector machines</subject><issn>2304-7232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFj9lqwzAQRU2h0JDmHwR5tqstsf1o0i2Q0kKX1zBanCjYkivJCfmxfl8FLe3LXIY53MNk2ZzgglSElTcSvDKu19GfC4opLeiiqDmteXWRTSjDPC8po1fZLIQDxphQUmO2mGRfjYXuHExAYBWSrh_Am-Asap1Hg9fKyGjS6lp0a0DoaCR68XpnwUZ0SkKLxmDsDq2tdUeI5qjT3VhpBujQKvU5qxP6r-l2zpu475E7ao9ex2FwPqIPLWMyPoHcG6tR80ed0kTrfvAJV6iRcvQgz9fZZQtd0LPfnGbv93dvq8d88_ywXjWbXFJSxVwqkIIDbSkToJaCtwvMaSmowoAlFhVoJSvKlilaXLeCCU6EkoTUALrmbJrNf3qT_3PUIW4PbvTpl7ClZVnialkSxr4BWDh9GQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pokala, Venkata Sai Kumar</creator><creator>Kumar, Neelam Sanjeev</creator><general>Russian New University</general><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221201</creationdate><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><author>Pokala, Venkata Sai Kumar ; Kumar, Neelam Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-cdacb4a2f23bad6b4f50427b2d0a0c0b8aedc8236edcf09fb3b41bdc119aae943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Diabetes</topic><topic>Pregnancy</topic><topic>Principal components analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokala, Venkata Sai Kumar</creatorcontrib><creatorcontrib>Kumar, Neelam Sanjeev</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cardiometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokala, Venkata Sai Kumar</au><au>Kumar, Neelam Sanjeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</atitle><jtitle>Cardiometry</jtitle><date>2022-12-01</date><risdate>2022</risdate><issue>25</issue><spage>942</spage><epage>948</epage><pages>942-948</pages><eissn>2304-7232</eissn><abstract>Aim: The study's aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</abstract><cop>Moscow</cop><pub>Russian New University</pub><doi>10.18137/cardiometry.2022.25.942948</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2304-7232 |
ispartof | Cardiometry, 2022-12 (25), p.942-948 |
issn | 2304-7232 |
language | eng |
recordid | cdi_proquest_journals_2777086713 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Diabetes Pregnancy Principal components analysis Support vector machines |
title | Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20comparison%20for%20prediction%20of%20Diabetic%20Pregnant%20women%20using%20Innovative%20Principal%20Component%20Analysis%20algorithm%20over%20Support%20Vector%20Machine%20Algorithm%20with%20Improved%20Accuracy&rft.jtitle=Cardiometry&rft.au=Pokala,%20Venkata%20Sai%20Kumar&rft.date=2022-12-01&rft.issue=25&rft.spage=942&rft.epage=948&rft.pages=942-948&rft.eissn=2304-7232&rft_id=info:doi/10.18137/cardiometry.2022.25.942948&rft_dat=%3Cproquest%3E2777086713%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-cdacb4a2f23bad6b4f50427b2d0a0c0b8aedc8236edcf09fb3b41bdc119aae943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777086713&rft_id=info:pmid/&rfr_iscdi=true |