Loading…

Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs

Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial i...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-02, Vol.33 (8), p.n/a
Main Authors: Soliman, Bram G., Longoni, Alessia, Wang, Mian, Li, Wanlu, Bernal, Paulina N., Cianciosi, Alessandro, Lindberg, Gabriella C.J., Malda, Jos, Groll, Juergen, Jungst, Tomasz, Levato, Riccardo, Rnjak‐Kovacina, Jelena, Woodfield, Tim B. F., Zhang, Yu Shrike, Lim, Khoon S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3
cites cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 33
creator Soliman, Bram G.
Longoni, Alessia
Wang, Mian
Li, Wanlu
Bernal, Paulina N.
Cianciosi, Alessandro
Lindberg, Gabriella C.J.
Malda, Jos
Groll, Juergen
Jungst, Tomasz
Levato, Riccardo
Rnjak‐Kovacina, Jelena
Woodfield, Tim B. F.
Zhang, Yu Shrike
Lim, Khoon S.
description Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively. Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.
doi_str_mv 10.1002/adfm.202210521
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777141416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777141416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEEqWwMltiTvGfJE7G0lCoVAQSRWKLjGO3LoldbEdVNjZWPiOfBFdFMKIb7qT7vXunF0XnCI4QhPiS1bIdYYgxgilGB9EAZSiLCcT54e-Mno-jE-fWECJKSTKIPh6sWVrWtkovQSka1osalMo503ReGQ1m2hvwyLhVUnHFGnCljNKvDkyNBWWvWas4WIh2Y2xYToz21jTASDC2fKW84L6zAmyVXykNSPn1_hkObKzSPhgF3Hnbce9OoyPJGifOfvoweppeLya38fz-ZjYZz2NOUopinvECvmQ4SSWp6zyRqKYJETTLiwyzgtaCcJjKHKaQJhwXLBVZQmQNJea5pIIMo4v93Y01b51wvlqbzupgWWFKKUpCZYEa7SlujXNWyCp83DLbVwhWu7CrXdjVb9hBUOwFW9WI_h-6GpfTuz_tNwSRhjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777141416</pqid></control><display><type>article</type><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</creator><creatorcontrib>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</creatorcontrib><description>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively. Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210521</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; biofabrication ; bioprinting ; Dissolution ; Embedding ; Gelatin ; Hydrogels ; Inks ; Materials science ; neo‐vascularization ; Network formation ; osteogenesis ; Ruthenium compounds ; sacrificial printing ; Sodium persulfate ; Three dimensional printing ; Tissue engineering ; Tyrosine</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (8), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</citedby><cites>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</cites><orcidid>0000-0003-2677-2765 ; 0000-0001-8311-8394 ; 0000-0002-0045-0808 ; 0000-0002-2458-8713 ; 0000-0002-5428-7575 ; 0000-0003-1575-2128 ; 0000-0002-2486-196X ; 0000-0002-3795-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Soliman, Bram G.</creatorcontrib><creatorcontrib>Longoni, Alessia</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Bernal, Paulina N.</creatorcontrib><creatorcontrib>Cianciosi, Alessandro</creatorcontrib><creatorcontrib>Lindberg, Gabriella C.J.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><creatorcontrib>Groll, Juergen</creatorcontrib><creatorcontrib>Jungst, Tomasz</creatorcontrib><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Rnjak‐Kovacina, Jelena</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><title>Advanced functional materials</title><description>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively. Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</description><subject>Bioengineering</subject><subject>biofabrication</subject><subject>bioprinting</subject><subject>Dissolution</subject><subject>Embedding</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Inks</subject><subject>Materials science</subject><subject>neo‐vascularization</subject><subject>Network formation</subject><subject>osteogenesis</subject><subject>Ruthenium compounds</subject><subject>sacrificial printing</subject><subject>Sodium persulfate</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tyrosine</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD9PwzAQxSMEEqWwMltiTvGfJE7G0lCoVAQSRWKLjGO3LoldbEdVNjZWPiOfBFdFMKIb7qT7vXunF0XnCI4QhPiS1bIdYYgxgilGB9EAZSiLCcT54e-Mno-jE-fWECJKSTKIPh6sWVrWtkovQSka1osalMo503ReGQ1m2hvwyLhVUnHFGnCljNKvDkyNBWWvWas4WIh2Y2xYToz21jTASDC2fKW84L6zAmyVXykNSPn1_hkObKzSPhgF3Hnbce9OoyPJGifOfvoweppeLya38fz-ZjYZz2NOUopinvECvmQ4SSWp6zyRqKYJETTLiwyzgtaCcJjKHKaQJhwXLBVZQmQNJea5pIIMo4v93Y01b51wvlqbzupgWWFKKUpCZYEa7SlujXNWyCp83DLbVwhWu7CrXdjVb9hBUOwFW9WI_h-6GpfTuz_tNwSRhjs</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Soliman, Bram G.</creator><creator>Longoni, Alessia</creator><creator>Wang, Mian</creator><creator>Li, Wanlu</creator><creator>Bernal, Paulina N.</creator><creator>Cianciosi, Alessandro</creator><creator>Lindberg, Gabriella C.J.</creator><creator>Malda, Jos</creator><creator>Groll, Juergen</creator><creator>Jungst, Tomasz</creator><creator>Levato, Riccardo</creator><creator>Rnjak‐Kovacina, Jelena</creator><creator>Woodfield, Tim B. F.</creator><creator>Zhang, Yu Shrike</creator><creator>Lim, Khoon S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2677-2765</orcidid><orcidid>https://orcid.org/0000-0001-8311-8394</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-2458-8713</orcidid><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0003-1575-2128</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid></search><sort><creationdate>20230201</creationdate><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><author>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering</topic><topic>biofabrication</topic><topic>bioprinting</topic><topic>Dissolution</topic><topic>Embedding</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Inks</topic><topic>Materials science</topic><topic>neo‐vascularization</topic><topic>Network formation</topic><topic>osteogenesis</topic><topic>Ruthenium compounds</topic><topic>sacrificial printing</topic><topic>Sodium persulfate</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soliman, Bram G.</creatorcontrib><creatorcontrib>Longoni, Alessia</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Bernal, Paulina N.</creatorcontrib><creatorcontrib>Cianciosi, Alessandro</creatorcontrib><creatorcontrib>Lindberg, Gabriella C.J.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><creatorcontrib>Groll, Juergen</creatorcontrib><creatorcontrib>Jungst, Tomasz</creatorcontrib><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Rnjak‐Kovacina, Jelena</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soliman, Bram G.</au><au>Longoni, Alessia</au><au>Wang, Mian</au><au>Li, Wanlu</au><au>Bernal, Paulina N.</au><au>Cianciosi, Alessandro</au><au>Lindberg, Gabriella C.J.</au><au>Malda, Jos</au><au>Groll, Juergen</au><au>Jungst, Tomasz</au><au>Levato, Riccardo</au><au>Rnjak‐Kovacina, Jelena</au><au>Woodfield, Tim B. F.</au><au>Zhang, Yu Shrike</au><au>Lim, Khoon S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively. Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210521</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2677-2765</orcidid><orcidid>https://orcid.org/0000-0001-8311-8394</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-2458-8713</orcidid><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0003-1575-2128</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-02, Vol.33 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2777141416
source Wiley-Blackwell Read & Publish Collection
subjects Bioengineering
biofabrication
bioprinting
Dissolution
Embedding
Gelatin
Hydrogels
Inks
Materials science
neo‐vascularization
Network formation
osteogenesis
Ruthenium compounds
sacrificial printing
Sodium persulfate
Three dimensional printing
Tissue engineering
Tyrosine
title Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Delayed%20Dissolution%20Into%20Sacrificial%20Bioinks%20For%20Dynamic%20Temporal%20Control%20of%20Architecture%20within%203D%E2%80%90Bioprinted%20Constructs&rft.jtitle=Advanced%20functional%20materials&rft.au=Soliman,%20Bram%20G.&rft.date=2023-02-01&rft.volume=33&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210521&rft_dat=%3Cproquest_cross%3E2777141416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777141416&rft_id=info:pmid/&rfr_iscdi=true