Loading…
Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs
Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial i...
Saved in:
Published in: | Advanced functional materials 2023-02, Vol.33 (8), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Soliman, Bram G. Longoni, Alessia Wang, Mian Li, Wanlu Bernal, Paulina N. Cianciosi, Alessandro Lindberg, Gabriella C.J. Malda, Jos Groll, Juergen Jungst, Tomasz Levato, Riccardo Rnjak‐Kovacina, Jelena Woodfield, Tim B. F. Zhang, Yu Shrike Lim, Khoon S. |
description | Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively.
Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function. |
doi_str_mv | 10.1002/adfm.202210521 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777141416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777141416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEEqWwMltiTvGfJE7G0lCoVAQSRWKLjGO3LoldbEdVNjZWPiOfBFdFMKIb7qT7vXunF0XnCI4QhPiS1bIdYYgxgilGB9EAZSiLCcT54e-Mno-jE-fWECJKSTKIPh6sWVrWtkovQSka1osalMo503ReGQ1m2hvwyLhVUnHFGnCljNKvDkyNBWWvWas4WIh2Y2xYToz21jTASDC2fKW84L6zAmyVXykNSPn1_hkObKzSPhgF3Hnbce9OoyPJGifOfvoweppeLya38fz-ZjYZz2NOUopinvECvmQ4SSWp6zyRqKYJETTLiwyzgtaCcJjKHKaQJhwXLBVZQmQNJea5pIIMo4v93Y01b51wvlqbzupgWWFKKUpCZYEa7SlujXNWyCp83DLbVwhWu7CrXdjVb9hBUOwFW9WI_h-6GpfTuz_tNwSRhjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777141416</pqid></control><display><type>article</type><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</creator><creatorcontrib>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</creatorcontrib><description>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively.
Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210521</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; biofabrication ; bioprinting ; Dissolution ; Embedding ; Gelatin ; Hydrogels ; Inks ; Materials science ; neo‐vascularization ; Network formation ; osteogenesis ; Ruthenium compounds ; sacrificial printing ; Sodium persulfate ; Three dimensional printing ; Tissue engineering ; Tyrosine</subject><ispartof>Advanced functional materials, 2023-02, Vol.33 (8), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</citedby><cites>FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</cites><orcidid>0000-0003-2677-2765 ; 0000-0001-8311-8394 ; 0000-0002-0045-0808 ; 0000-0002-2458-8713 ; 0000-0002-5428-7575 ; 0000-0003-1575-2128 ; 0000-0002-2486-196X ; 0000-0002-3795-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Soliman, Bram G.</creatorcontrib><creatorcontrib>Longoni, Alessia</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Bernal, Paulina N.</creatorcontrib><creatorcontrib>Cianciosi, Alessandro</creatorcontrib><creatorcontrib>Lindberg, Gabriella C.J.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><creatorcontrib>Groll, Juergen</creatorcontrib><creatorcontrib>Jungst, Tomasz</creatorcontrib><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Rnjak‐Kovacina, Jelena</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><title>Advanced functional materials</title><description>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively.
Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</description><subject>Bioengineering</subject><subject>biofabrication</subject><subject>bioprinting</subject><subject>Dissolution</subject><subject>Embedding</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Inks</subject><subject>Materials science</subject><subject>neo‐vascularization</subject><subject>Network formation</subject><subject>osteogenesis</subject><subject>Ruthenium compounds</subject><subject>sacrificial printing</subject><subject>Sodium persulfate</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tyrosine</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD9PwzAQxSMEEqWwMltiTvGfJE7G0lCoVAQSRWKLjGO3LoldbEdVNjZWPiOfBFdFMKIb7qT7vXunF0XnCI4QhPiS1bIdYYgxgilGB9EAZSiLCcT54e-Mno-jE-fWECJKSTKIPh6sWVrWtkovQSka1osalMo503ReGQ1m2hvwyLhVUnHFGnCljNKvDkyNBWWvWas4WIh2Y2xYToz21jTASDC2fKW84L6zAmyVXykNSPn1_hkObKzSPhgF3Hnbce9OoyPJGifOfvoweppeLya38fz-ZjYZz2NOUopinvECvmQ4SSWp6zyRqKYJETTLiwyzgtaCcJjKHKaQJhwXLBVZQmQNJea5pIIMo4v93Y01b51wvlqbzupgWWFKKUpCZYEa7SlujXNWyCp83DLbVwhWu7CrXdjVb9hBUOwFW9WI_h-6GpfTuz_tNwSRhjs</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Soliman, Bram G.</creator><creator>Longoni, Alessia</creator><creator>Wang, Mian</creator><creator>Li, Wanlu</creator><creator>Bernal, Paulina N.</creator><creator>Cianciosi, Alessandro</creator><creator>Lindberg, Gabriella C.J.</creator><creator>Malda, Jos</creator><creator>Groll, Juergen</creator><creator>Jungst, Tomasz</creator><creator>Levato, Riccardo</creator><creator>Rnjak‐Kovacina, Jelena</creator><creator>Woodfield, Tim B. F.</creator><creator>Zhang, Yu Shrike</creator><creator>Lim, Khoon S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2677-2765</orcidid><orcidid>https://orcid.org/0000-0001-8311-8394</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-2458-8713</orcidid><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0003-1575-2128</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid></search><sort><creationdate>20230201</creationdate><title>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</title><author>Soliman, Bram G. ; Longoni, Alessia ; Wang, Mian ; Li, Wanlu ; Bernal, Paulina N. ; Cianciosi, Alessandro ; Lindberg, Gabriella C.J. ; Malda, Jos ; Groll, Juergen ; Jungst, Tomasz ; Levato, Riccardo ; Rnjak‐Kovacina, Jelena ; Woodfield, Tim B. F. ; Zhang, Yu Shrike ; Lim, Khoon S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering</topic><topic>biofabrication</topic><topic>bioprinting</topic><topic>Dissolution</topic><topic>Embedding</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Inks</topic><topic>Materials science</topic><topic>neo‐vascularization</topic><topic>Network formation</topic><topic>osteogenesis</topic><topic>Ruthenium compounds</topic><topic>sacrificial printing</topic><topic>Sodium persulfate</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soliman, Bram G.</creatorcontrib><creatorcontrib>Longoni, Alessia</creatorcontrib><creatorcontrib>Wang, Mian</creatorcontrib><creatorcontrib>Li, Wanlu</creatorcontrib><creatorcontrib>Bernal, Paulina N.</creatorcontrib><creatorcontrib>Cianciosi, Alessandro</creatorcontrib><creatorcontrib>Lindberg, Gabriella C.J.</creatorcontrib><creatorcontrib>Malda, Jos</creatorcontrib><creatorcontrib>Groll, Juergen</creatorcontrib><creatorcontrib>Jungst, Tomasz</creatorcontrib><creatorcontrib>Levato, Riccardo</creatorcontrib><creatorcontrib>Rnjak‐Kovacina, Jelena</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Lim, Khoon S.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soliman, Bram G.</au><au>Longoni, Alessia</au><au>Wang, Mian</au><au>Li, Wanlu</au><au>Bernal, Paulina N.</au><au>Cianciosi, Alessandro</au><au>Lindberg, Gabriella C.J.</au><au>Malda, Jos</au><au>Groll, Juergen</au><au>Jungst, Tomasz</au><au>Levato, Riccardo</au><au>Rnjak‐Kovacina, Jelena</au><au>Woodfield, Tim B. F.</au><au>Zhang, Yu Shrike</au><au>Lim, Khoon S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs</atitle><jtitle>Advanced functional materials</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Sacrificial printing allows introduction of architectural cues within engineered tissue constructs. This strategy adopts the use of a 3D‐printed sacrificial ink that is embedded within a bulk hydrogel which is subsequently dissolved to leave open‐channels. However, current conventional sacrificial inks do not recapitulate the dynamic nature of tissue development, such as the temporal presentation of architectural cues matching cellular requirements during different stages of maturation. To address this limitation, a new class of sacrificial inks is developed that exhibits tailorable and programmable delayed dissolution profiles (1–17 days), by exploiting the unique ability of the ruthenium complex and sodium persulfate initiating system to crosslink native tyrosine groups present in non‐chemically modified gelatin. These novel sacrificial inks are also shown to be compatible with a range of biofabrication technologies, including extrusion‐based printing, digital‐light processing, and volumetric bioprinting. Further embedding these sacrificial templates within cell‐laden bulk hydrogels displays precise control over the spatial and temporal introduction of architectural features into cell‐laden hydrogel constructs. This approach demonstrates the unique capacity of delaying dissolution of sacrificial inks to modulate cell behavior, improving the deposition of mineralized matrix and capillary‐like network formation in osteogenic and vasculogenic culture, respectively.
Sacrificial bioprinting is an exciting platform to impart multiscale architecture into hydrogel constructs. Here, a simple yet elegant approach is demonstrated, using visible light photo‐initiating chemistry to crosslink non‐chemically modified gelatin, producing sacrificial bioinks with programmable dissolution profiles. These delayed dissolution sacrificial bioinks can be adapted to a range of biofabrication platforms, including extrusion, lithography, and volumetric bioprinting, successfully introducing architectural cues into thick hydrogel constructs in a spatial‐temporal manner to direct cellular function.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210521</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2677-2765</orcidid><orcidid>https://orcid.org/0000-0001-8311-8394</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-2458-8713</orcidid><orcidid>https://orcid.org/0000-0002-5428-7575</orcidid><orcidid>https://orcid.org/0000-0003-1575-2128</orcidid><orcidid>https://orcid.org/0000-0002-2486-196X</orcidid><orcidid>https://orcid.org/0000-0002-3795-3804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-02, Vol.33 (8), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2777141416 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bioengineering biofabrication bioprinting Dissolution Embedding Gelatin Hydrogels Inks Materials science neo‐vascularization Network formation osteogenesis Ruthenium compounds sacrificial printing Sodium persulfate Three dimensional printing Tissue engineering Tyrosine |
title | Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3D‐Bioprinted Constructs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Delayed%20Dissolution%20Into%20Sacrificial%20Bioinks%20For%20Dynamic%20Temporal%20Control%20of%20Architecture%20within%203D%E2%80%90Bioprinted%20Constructs&rft.jtitle=Advanced%20functional%20materials&rft.au=Soliman,%20Bram%20G.&rft.date=2023-02-01&rft.volume=33&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210521&rft_dat=%3Cproquest_cross%3E2777141416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-c6c90b6245f3dd84f1d743e768962a97de3c05f805074c29a5e643fd0f2c8f7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777141416&rft_id=info:pmid/&rfr_iscdi=true |