Loading…

Derandomized Novelty Detection with FDR Control via Conformal E-values

Conformal inference provides a general distribution-free method to rigorously calibrate the output of any machine learning algorithm for novelty detection. While this approach has many strengths, it has the limitation of being randomized, in the sense that it may lead to different results when analy...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Meshi Bashari, Epstein, Amir, Romano, Yaniv, Sesia, Matteo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conformal inference provides a general distribution-free method to rigorously calibrate the output of any machine learning algorithm for novelty detection. While this approach has many strengths, it has the limitation of being randomized, in the sense that it may lead to different results when analyzing twice the same data, and this can hinder the interpretation of any findings. We propose to make conformal inferences more stable by leveraging suitable conformal e-values instead of p-values to quantify statistical significance. This solution allows the evidence gathered from multiple analyses of the same data to be aggregated effectively while provably controlling the false discovery rate. Further, we show that the proposed method can reduce randomness without much loss of power compared to standard conformal inference, partly thanks to an innovative way of weighting conformal e-values based on additional side information carefully extracted from the same data. Simulations with synthetic and real data confirm this solution can be effective at eliminating random noise in the inferences obtained with state-of-the-art alternative techniques, sometimes also leading to higher power.
ISSN:2331-8422