Loading…

Cartesian Gray-Monoidal Double Categories

In this paper we present cartesian structure for symmetric Gray-monoidal double categories. To do this we first introduce locally cubical Gray categories, which are three-dimensional categorical structures analogous to classical, locally globular, Gray categories. The motivating example comprises do...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Author: Morehouse, Edward
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Morehouse, Edward
description In this paper we present cartesian structure for symmetric Gray-monoidal double categories. To do this we first introduce locally cubical Gray categories, which are three-dimensional categorical structures analogous to classical, locally globular, Gray categories. The motivating example comprises double categories themselves, together with their functors, transformations, and modifications. A one-object locally cubical Gray category is a Gray-monoidal double category. Braiding, syllepsis, and symmetry for these is introduced in a manner analogous to that for 2-categories. Adding cartesian structure requires the introduction of doubly-lax functors of double categories to manage the order of copies. The resulting theory is algebraically rather complex, largely due to the bureaucracy of linearizing higher-dimensional boundary constraints. Fortunately, it has a relatively simple and compelling representation in the graphical calculus of surface diagrams, which we present.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2777167139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777167139</sourcerecordid><originalsourceid>FETCH-proquest_journals_27771671393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdE4sKkktzkzMU3AvSqzU9c3Py89MScxRcMkvTcpJVXBOLElNzy_KTC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3Nzc0Mzc0NjS2PiVAEAyQ4wYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777167139</pqid></control><display><type>article</type><title>Cartesian Gray-Monoidal Double Categories</title><source>Publicly Available Content Database</source><creator>Morehouse, Edward</creator><creatorcontrib>Morehouse, Edward</creatorcontrib><description>In this paper we present cartesian structure for symmetric Gray-monoidal double categories. To do this we first introduce locally cubical Gray categories, which are three-dimensional categorical structures analogous to classical, locally globular, Gray categories. The motivating example comprises double categories themselves, together with their functors, transformations, and modifications. A one-object locally cubical Gray category is a Gray-monoidal double category. Braiding, syllepsis, and symmetry for these is introduced in a manner analogous to that for 2-categories. Adding cartesian structure requires the introduction of doubly-lax functors of double categories to manage the order of copies. The resulting theory is algebraically rather complex, largely due to the bureaucracy of linearizing higher-dimensional boundary constraints. Fortunately, it has a relatively simple and compelling representation in the graphical calculus of surface diagrams, which we present.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braiding ; Cartesian coordinates ; Categories ; Graphical representations ; Symmetry</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2777167139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Morehouse, Edward</creatorcontrib><title>Cartesian Gray-Monoidal Double Categories</title><title>arXiv.org</title><description>In this paper we present cartesian structure for symmetric Gray-monoidal double categories. To do this we first introduce locally cubical Gray categories, which are three-dimensional categorical structures analogous to classical, locally globular, Gray categories. The motivating example comprises double categories themselves, together with their functors, transformations, and modifications. A one-object locally cubical Gray category is a Gray-monoidal double category. Braiding, syllepsis, and symmetry for these is introduced in a manner analogous to that for 2-categories. Adding cartesian structure requires the introduction of doubly-lax functors of double categories to manage the order of copies. The resulting theory is algebraically rather complex, largely due to the bureaucracy of linearizing higher-dimensional boundary constraints. Fortunately, it has a relatively simple and compelling representation in the graphical calculus of surface diagrams, which we present.</description><subject>Braiding</subject><subject>Cartesian coordinates</subject><subject>Categories</subject><subject>Graphical representations</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdE4sKkktzkzMU3AvSqzU9c3Py89MScxRcMkvTcpJVXBOLElNzy_KTC3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3Nzc0Mzc0NjS2PiVAEAyQ4wYA</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Morehouse, Edward</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230710</creationdate><title>Cartesian Gray-Monoidal Double Categories</title><author>Morehouse, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27771671393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Braiding</topic><topic>Cartesian coordinates</topic><topic>Categories</topic><topic>Graphical representations</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Morehouse, Edward</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morehouse, Edward</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cartesian Gray-Monoidal Double Categories</atitle><jtitle>arXiv.org</jtitle><date>2023-07-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper we present cartesian structure for symmetric Gray-monoidal double categories. To do this we first introduce locally cubical Gray categories, which are three-dimensional categorical structures analogous to classical, locally globular, Gray categories. The motivating example comprises double categories themselves, together with their functors, transformations, and modifications. A one-object locally cubical Gray category is a Gray-monoidal double category. Braiding, syllepsis, and symmetry for these is introduced in a manner analogous to that for 2-categories. Adding cartesian structure requires the introduction of doubly-lax functors of double categories to manage the order of copies. The resulting theory is algebraically rather complex, largely due to the bureaucracy of linearizing higher-dimensional boundary constraints. Fortunately, it has a relatively simple and compelling representation in the graphical calculus of surface diagrams, which we present.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2777167139
source Publicly Available Content Database
subjects Braiding
Cartesian coordinates
Categories
Graphical representations
Symmetry
title Cartesian Gray-Monoidal Double Categories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cartesian%20Gray-Monoidal%20Double%20Categories&rft.jtitle=arXiv.org&rft.au=Morehouse,%20Edward&rft.date=2023-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2777167139%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27771671393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777167139&rft_id=info:pmid/&rfr_iscdi=true