Loading…
IMPROVED THERMAL ABLATION EFFICACY USING MAGNETIC NANOPARTICLES: A STUDY IN TUMOR PHANTOMS
Magnetic heating used for inducing hyperthermia and thermal ablation is particularly promising in the treatment of cancer provided that the therapeutic temperature is kept constant during the treatment time throughout the targeted tissue and the healthy surrounding tissues are maintained at a safe t...
Saved in:
Published in: | Electromagnetic waves (Cambridge, Mass.) Mass.), 2012-01, Vol.128, p.229-248 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetic heating used for inducing hyperthermia and thermal ablation is particularly promising in the treatment of cancer provided that the therapeutic temperature is kept constant during the treatment time throughout the targeted tissue and the healthy surrounding tissues are maintained at a safe temperature. The present study shows the temperature increment produced by different concentrations of magnetic nanoparticles (ferrofluid and magnetoliposomes) inside a phantom, after irradiating tissue-mimicking materials (phantoms)with a minimally invasive coaxial antenna working at a frequency of 2.45 GHz. This frequency was chosen because maximum dielectric loss of water molecules begins at 2.4 GHz and because this is an ISM (industrial, scientific and medical) frequency. Temperature sensors were placed inside and outside the tumor phantom to assess the focusing effect of heat produced by nanoparticles. Results have shown that the temperature increments depend on the nanoparticles concentration. In this way, a temperature increment of more than 56°C |
---|---|
ISSN: | 1559-8985 1070-4698 1559-8985 |
DOI: | 10.2528/pier12020108 |