Loading…

Effect of Topology on Transient Dynamic and Shock Response of Polymeric Lattice Structures

Architected cellular materials, such as lattice structures, offer potential for tunable mechanical properties for dynamic applications of energy absorption and impact mitigation. In this work, the static and dynamic behavior of polymeric lattice structures was investigated through experiments on oct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamic behavior of materials 2023-03, Vol.9 (1), p.44-64
Main Authors: Weeks, J. S., Ravichandran, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Architected cellular materials, such as lattice structures, offer potential for tunable mechanical properties for dynamic applications of energy absorption and impact mitigation. In this work, the static and dynamic behavior of polymeric lattice structures was investigated through experiments on octet-truss, Kelvin, and cubic topologies with relative densities around 8%. Dynamic testing was conducted via direct impact experiments (25–70 m/s) with high-speed imaging coupled with digital image correlation and a polycarbonate Hopkinson pressure bar. Mechanical properties such as elastic wave speed, deformation modes, failure properties, particle velocities, and stress histories were extracted from experimental results. At low impact velocities, a transient dynamic response was observed which was composed of a compaction front initiating at the impact surface and additional deformation bands whose characteristics matched low strain-rate behavior. For higher impact velocities, shock analysis was carried out using compaction wave velocity and Eulerian Rankine–Hugoniot jump conditions with parameters determined from full-field measurements.
ISSN:2199-7446
2199-7454
DOI:10.1007/s40870-022-00359-2