Loading…
Feature selection for set-valued data based on D–S evidence theory
Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of informa...
Saved in:
Published in: | The Artificial intelligence review 2023-03, Vol.56 (3), p.2667-2696 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3 |
container_end_page | 2696 |
container_issue | 3 |
container_start_page | 2667 |
container_title | The Artificial intelligence review |
container_volume | 56 |
creator | Wang, Yini Wang, Sichun |
description | Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of information. In this paper, we introduce robust feature evaluation metrics “belief function” and “plausibility function” into feature selection algorithm to avoid the defect that classification effect is affected by noise such as missing values, confusing data, etc. Firstly, similarity between information values in a set-valued information system (SVIS) is introduced and a variable parameter to control the similarity of samples is given. Secondly,
θ
-lower and
θ
-upper approximations in an SVIS are put forward. Then, the concepts of
θ
-belief function,
θ
-plausibility function,
θ
-belief reduction and
θ
-plausibility reduction are given. Moreover, several feature selection algorithms based on the D–S evidence theory in an SVIS are proposed. Experimental results and statistical test show that the proposed metric is insensitive to noise because it comprehensively considers the evidence at all levels, and the proposed algorithms are more robust than several state-of-the-art feature selection algorithms. |
doi_str_mv | 10.1007/s10462-022-10241-1 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2777522719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737757517</galeid><sourcerecordid>A737757517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8E8fJsmopIFViAawtx56UVGlcbKdSd9yBG3ISDEFih7wYz8z7ZkYPoUtKrikh8iZQkhcME8YwJSynmB6hCRWSY5nqx2hCWFFhVjJ6is5C2BBCBMv5BC2WoOPgIQvQgYmt67PG-ZRFvNfdADazOuqs1iF9U3Px-f7xlMG-tdAbyOIrOH84RyeN7gJc_MYpelnePs_v8erx7mE-W2HDyjJio-uC81yKgpqGVoRBBVbWpQXKRUWErq22RBBR6hzAFoKXPC8KRnNdm6oyfIquxrk7794GCFFt3OD7tFIxKaVgTNIqqa5H1Vp3oNq-cdFrk56FbWtcD02b6jPJEyEFlQlgI2C8C8FDo3a-3Wp_UJSob3vVaK9K9qofexVNEB-hkMT9GvzfLf9QX_iCfF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777522719</pqid></control><display><type>article</type><title>Feature selection for set-valued data based on D–S evidence theory</title><source>Library & Information Science Abstracts (LISA)</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Library & Information Science Collection</source><source>Springer Link</source><creator>Wang, Yini ; Wang, Sichun</creator><creatorcontrib>Wang, Yini ; Wang, Sichun</creatorcontrib><description>Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of information. In this paper, we introduce robust feature evaluation metrics “belief function” and “plausibility function” into feature selection algorithm to avoid the defect that classification effect is affected by noise such as missing values, confusing data, etc. Firstly, similarity between information values in a set-valued information system (SVIS) is introduced and a variable parameter to control the similarity of samples is given. Secondly,
θ
-lower and
θ
-upper approximations in an SVIS are put forward. Then, the concepts of
θ
-belief function,
θ
-plausibility function,
θ
-belief reduction and
θ
-plausibility reduction are given. Moreover, several feature selection algorithms based on the D–S evidence theory in an SVIS are proposed. Experimental results and statistical test show that the proposed metric is insensitive to noise because it comprehensively considers the evidence at all levels, and the proposed algorithms are more robust than several state-of-the-art feature selection algorithms.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-022-10241-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Big Data ; Computer Science ; Data mining ; Feature selection ; Noise sensitivity ; Robustness ; Set theory ; Similarity ; Statistical tests</subject><ispartof>The Artificial intelligence review, 2023-03, Vol.56 (3), p.2667-2696</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3</citedby><cites>FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3</cites><orcidid>0000-0002-7931-025X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2777522719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777522719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21381,21394,27305,27924,27925,33611,33906,34135,36060,43733,43892,44363,74221,74409,74895</link.rule.ids></links><search><creatorcontrib>Wang, Yini</creatorcontrib><creatorcontrib>Wang, Sichun</creatorcontrib><title>Feature selection for set-valued data based on D–S evidence theory</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of information. In this paper, we introduce robust feature evaluation metrics “belief function” and “plausibility function” into feature selection algorithm to avoid the defect that classification effect is affected by noise such as missing values, confusing data, etc. Firstly, similarity between information values in a set-valued information system (SVIS) is introduced and a variable parameter to control the similarity of samples is given. Secondly,
θ
-lower and
θ
-upper approximations in an SVIS are put forward. Then, the concepts of
θ
-belief function,
θ
-plausibility function,
θ
-belief reduction and
θ
-plausibility reduction are given. Moreover, several feature selection algorithms based on the D–S evidence theory in an SVIS are proposed. Experimental results and statistical test show that the proposed metric is insensitive to noise because it comprehensively considers the evidence at all levels, and the proposed algorithms are more robust than several state-of-the-art feature selection algorithms.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Feature selection</subject><subject>Noise sensitivity</subject><subject>Robustness</subject><subject>Set theory</subject><subject>Similarity</subject><subject>Statistical tests</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M0C</sourceid><sourceid>M1O</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWBv8E8fJsmopIFViAawtx56UVGlcbKdSd9yBG3ISDEFih7wYz8z7ZkYPoUtKrikh8iZQkhcME8YwJSynmB6hCRWSY5nqx2hCWFFhVjJ6is5C2BBCBMv5BC2WoOPgIQvQgYmt67PG-ZRFvNfdADazOuqs1iF9U3Px-f7xlMG-tdAbyOIrOH84RyeN7gJc_MYpelnePs_v8erx7mE-W2HDyjJio-uC81yKgpqGVoRBBVbWpQXKRUWErq22RBBR6hzAFoKXPC8KRnNdm6oyfIquxrk7794GCFFt3OD7tFIxKaVgTNIqqa5H1Vp3oNq-cdFrk56FbWtcD02b6jPJEyEFlQlgI2C8C8FDo3a-3Wp_UJSob3vVaK9K9qofexVNEB-hkMT9GvzfLf9QX_iCfF4</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Yini</creator><creator>Wang, Sichun</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7931-025X</orcidid></search><sort><creationdate>20230301</creationdate><title>Feature selection for set-valued data based on D–S evidence theory</title><author>Wang, Yini ; Wang, Sichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Feature selection</topic><topic>Noise sensitivity</topic><topic>Robustness</topic><topic>Set theory</topic><topic>Similarity</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yini</creatorcontrib><creatorcontrib>Wang, Sichun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yini</au><au>Wang, Sichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for set-valued data based on D–S evidence theory</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>56</volume><issue>3</issue><spage>2667</spage><epage>2696</epage><pages>2667-2696</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of information. In this paper, we introduce robust feature evaluation metrics “belief function” and “plausibility function” into feature selection algorithm to avoid the defect that classification effect is affected by noise such as missing values, confusing data, etc. Firstly, similarity between information values in a set-valued information system (SVIS) is introduced and a variable parameter to control the similarity of samples is given. Secondly,
θ
-lower and
θ
-upper approximations in an SVIS are put forward. Then, the concepts of
θ
-belief function,
θ
-plausibility function,
θ
-belief reduction and
θ
-plausibility reduction are given. Moreover, several feature selection algorithms based on the D–S evidence theory in an SVIS are proposed. Experimental results and statistical test show that the proposed metric is insensitive to noise because it comprehensively considers the evidence at all levels, and the proposed algorithms are more robust than several state-of-the-art feature selection algorithms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-022-10241-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7931-025X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2023-03, Vol.56 (3), p.2667-2696 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_2777522719 |
source | Library & Information Science Abstracts (LISA); Social Science Premium Collection; ABI/INFORM Global; Library & Information Science Collection; Springer Link |
subjects | Algorithms Analysis Artificial Intelligence Big Data Computer Science Data mining Feature selection Noise sensitivity Robustness Set theory Similarity Statistical tests |
title | Feature selection for set-valued data based on D–S evidence theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20set-valued%20data%20based%20on%20D%E2%80%93S%20evidence%20theory&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Wang,%20Yini&rft.date=2023-03-01&rft.volume=56&rft.issue=3&rft.spage=2667&rft.epage=2696&rft.pages=2667-2696&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-022-10241-1&rft_dat=%3Cgale_proqu%3EA737757517%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-cab63347561cf1902e9ed7b8de135905abdad05058a4eed65383466214abc99c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777522719&rft_id=info:pmid/&rft_galeid=A737757517&rfr_iscdi=true |