Loading…
Fixed-time output feedback distributed cooperative event-triggered control for multiple surface vessels with prescribed performance constraints
This paper studies the distributed cooperative control problem for multiple surface vessels (MSVs) subject to unknown environmental disturbances, model uncertainties, unavailable velocities and prescribed performance constraints. Firstly, a fixed-time extended state observer (FxESO) is designed to p...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the distributed cooperative control problem for multiple surface vessels (MSVs) subject to unknown environmental disturbances, model uncertainties, unavailable velocities and prescribed performance constraints. Firstly, a fixed-time extended state observer (FxESO) is designed to provide the estimations of velocities and lumped disturbances (including unknown environmental disturbances and model uncertainties). Secondly, to improve the convergence performance of the MSVs, a hyperbolic cosecant prescribed performance function is incorporated into the cooperative control algorithm. Thirdly, a fixed-time event-triggered control law with prescribed performance constraint is applied to cooperative control based on a fixed-time nonsingular terminal sliding mode manifold (FxNTSMM), and the cooperative errors can converge within fixed time. Finally, by employing Lyapunov function theory, the stability of the closed-loop system is analyzed. Simulation results are given to demonstrate the effectiveness of the proposed control scheme. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3245065 |