Loading…

A Comparative Analysis of CNN-Based Pretrained Models for the Detection and Prediction of Monkeypox

Monkeypox is a rare disease that raised concern among medical specialists following the convi-19 pandemic. It's concerning since monkeypox is difficult to diagnose early on because of symptoms that are similar to chickenpox and measles. Furthermore, because this is a rare condition, there is a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-01
Main Authors: Saha, Sourav, Chakraborty, Trina, Rejwan Bin Sulaiman, Tithi, Paul
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monkeypox is a rare disease that raised concern among medical specialists following the convi-19 pandemic. It's concerning since monkeypox is difficult to diagnose early on because of symptoms that are similar to chickenpox and measles. Furthermore, because this is a rare condition, there is a knowledge gap among healthcare professionals. As a result, there is an urgent need for a novel technique to combat and anticipate the disease in the early phases of individual virus infection. Multiple CNN-based pre-trained models, including VGG-16, VGG-19, Restnet50, Inception-V3, Densnet, Xception, MobileNetV2, Alexnet, Lenet, and majority Voting, were employed in classification in this study. For this study, multiple data sets were combined, such as monkeypox vs chickenpox, monkeypox versus measles, monkeypox versus normal, and monkeypox versus all diseases. Majority voting performed 97% in monkeypox vs chickenpox, Xception achieved 79% in monkeypox against measles, MobileNetV2 scored 96% in monkeypox vs normal, and Lenet performed 80% in monkeypox versus all.
ISSN:2331-8422