Loading…

Structure and coloring of some (\(P_7,C_4\))-free graphs

Let \(G\) be a graph. We use \(P_t\) and \(C_t\) to denote a path and a cycle on \(t\) vertices, respectively. A {\em diamond} is a graph obtained from two triangles that share exactly one edge. A {\em kite} is a graph consists of a diamond and another vertex adjacent to a vertex of degree 2 of the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-02
Main Authors: Chen, Ran, Wu, Di, Xu, Baogang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Ran
Wu, Di
Xu, Baogang
description Let \(G\) be a graph. We use \(P_t\) and \(C_t\) to denote a path and a cycle on \(t\) vertices, respectively. A {\em diamond} is a graph obtained from two triangles that share exactly one edge. A {\em kite} is a graph consists of a diamond and another vertex adjacent to a vertex of degree 2 of the diamond. A {\em gem} is a graph that consists of a \(P_4\) plus a vertex adjacent to all vertices of the \(P_4\). In this paper, we prove some structural properties to \((P_7, C_4,\) diamond)-free graphs, \((P_7, C_4,\) kite)-free graphs and \((P_7, C_4,\) gem)-free graphs. As their corollaries, we show that (\romannumeral 1) \(\chi (G)\leq \max\{3,\omega(G)\}\) if \(G\) is \((P_7, C_4,\) diamond)-free, (\romannumeral 2) \(\chi(G)\leq \omega(G)+1\) if \(G\) is \((P_7, C_4,\) kite)-free and (\romannumeral 3) \(\chi(G)\leq 2\omega(G)-1\) if \(G\) is \((P_7, C_4,\) gem)-free. These conclusions generalize some results of Choudum {\em et al} and Lan {\em et al}.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2779274147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779274147</sourcerecordid><originalsourceid>FETCH-proquest_journals_27792741473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCC4pKk0uKS1KVUjMS1FIzs_JL8rMS1fIT1Mozs9NVdCI0QiIN9dxjjeJ0dTUTStKTVVIL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NzSyNzE0MTc2PiVAEAiXI0YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779274147</pqid></control><display><type>article</type><title>Structure and coloring of some (\(P_7,C_4\))-free graphs</title><source>Publicly Available Content Database</source><creator>Chen, Ran ; Wu, Di ; Xu, Baogang</creator><creatorcontrib>Chen, Ran ; Wu, Di ; Xu, Baogang</creatorcontrib><description>Let \(G\) be a graph. We use \(P_t\) and \(C_t\) to denote a path and a cycle on \(t\) vertices, respectively. A {\em diamond} is a graph obtained from two triangles that share exactly one edge. A {\em kite} is a graph consists of a diamond and another vertex adjacent to a vertex of degree 2 of the diamond. A {\em gem} is a graph that consists of a \(P_4\) plus a vertex adjacent to all vertices of the \(P_4\). In this paper, we prove some structural properties to \((P_7, C_4,\) diamond)-free graphs, \((P_7, C_4,\) kite)-free graphs and \((P_7, C_4,\) gem)-free graphs. As their corollaries, we show that (\romannumeral 1) \(\chi (G)\leq \max\{3,\omega(G)\}\) if \(G\) is \((P_7, C_4,\) diamond)-free, (\romannumeral 2) \(\chi(G)\leq \omega(G)+1\) if \(G\) is \((P_7, C_4,\) kite)-free and (\romannumeral 3) \(\chi(G)\leq 2\omega(G)-1\) if \(G\) is \((P_7, C_4,\) gem)-free. These conclusions generalize some results of Choudum {\em et al} and Lan {\em et al}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graph theory ; Graphs</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2779274147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Xu, Baogang</creatorcontrib><title>Structure and coloring of some (\(P_7,C_4\))-free graphs</title><title>arXiv.org</title><description>Let \(G\) be a graph. We use \(P_t\) and \(C_t\) to denote a path and a cycle on \(t\) vertices, respectively. A {\em diamond} is a graph obtained from two triangles that share exactly one edge. A {\em kite} is a graph consists of a diamond and another vertex adjacent to a vertex of degree 2 of the diamond. A {\em gem} is a graph that consists of a \(P_4\) plus a vertex adjacent to all vertices of the \(P_4\). In this paper, we prove some structural properties to \((P_7, C_4,\) diamond)-free graphs, \((P_7, C_4,\) kite)-free graphs and \((P_7, C_4,\) gem)-free graphs. As their corollaries, we show that (\romannumeral 1) \(\chi (G)\leq \max\{3,\omega(G)\}\) if \(G\) is \((P_7, C_4,\) diamond)-free, (\romannumeral 2) \(\chi(G)\leq \omega(G)+1\) if \(G\) is \((P_7, C_4,\) kite)-free and (\romannumeral 3) \(\chi(G)\leq 2\omega(G)-1\) if \(G\) is \((P_7, C_4,\) gem)-free. These conclusions generalize some results of Choudum {\em et al} and Lan {\em et al}.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCC4pKk0uKS1KVUjMS1FIzs_JL8rMS1fIT1Mozs9NVdCI0QiIN9dxjjeJ0dTUTStKTVVIL0osyCjmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NzSyNzE0MTc2PiVAEAiXI0YQ</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Chen, Ran</creator><creator>Wu, Di</creator><creator>Xu, Baogang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230222</creationdate><title>Structure and coloring of some (\(P_7,C_4\))-free graphs</title><author>Chen, Ran ; Wu, Di ; Xu, Baogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27792741473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Xu, Baogang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ran</au><au>Wu, Di</au><au>Xu, Baogang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structure and coloring of some (\(P_7,C_4\))-free graphs</atitle><jtitle>arXiv.org</jtitle><date>2023-02-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a graph. We use \(P_t\) and \(C_t\) to denote a path and a cycle on \(t\) vertices, respectively. A {\em diamond} is a graph obtained from two triangles that share exactly one edge. A {\em kite} is a graph consists of a diamond and another vertex adjacent to a vertex of degree 2 of the diamond. A {\em gem} is a graph that consists of a \(P_4\) plus a vertex adjacent to all vertices of the \(P_4\). In this paper, we prove some structural properties to \((P_7, C_4,\) diamond)-free graphs, \((P_7, C_4,\) kite)-free graphs and \((P_7, C_4,\) gem)-free graphs. As their corollaries, we show that (\romannumeral 1) \(\chi (G)\leq \max\{3,\omega(G)\}\) if \(G\) is \((P_7, C_4,\) diamond)-free, (\romannumeral 2) \(\chi(G)\leq \omega(G)+1\) if \(G\) is \((P_7, C_4,\) kite)-free and (\romannumeral 3) \(\chi(G)\leq 2\omega(G)-1\) if \(G\) is \((P_7, C_4,\) gem)-free. These conclusions generalize some results of Choudum {\em et al} and Lan {\em et al}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2779274147
source Publicly Available Content Database
subjects Apexes
Graph theory
Graphs
title Structure and coloring of some (\(P_7,C_4\))-free graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structure%20and%20coloring%20of%20some%20(%5C(P_7,C_4%5C))-free%20graphs&rft.jtitle=arXiv.org&rft.au=Chen,%20Ran&rft.date=2023-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2779274147%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27792741473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779274147&rft_id=info:pmid/&rfr_iscdi=true