Loading…
High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes
Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less...
Saved in:
Published in: | Nano research 2022-08, Vol.15 (8), p.7631-7638 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283 |
container_end_page | 7638 |
container_issue | 8 |
container_start_page | 7631 |
container_title | Nano research |
container_volume | 15 |
creator | Lu, Ya-Cong Zhang, Zhen-Feng Yang, Xun He, Gao-Hang Lin, Chao-Nan Chen, Xue-Xia Zang, Jin-Hao Zhao, Wen-Bo Chen, Yan-Cheng Zhang, Lei-Lei Li, Yi-Zhe Shan, Chong-Xin |
description | Ga
2
O
3
has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga
2
O
3
MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga
2
O
3
MWs, possessing a light/dark current ratio of 10
7
and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga
2
O
3
MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga
2
O
3
MWs, and thus may push forward their future applications. |
doi_str_mv | 10.1007/s12274-022-4341-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779276176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779276176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTb4J7HjI6qgRarUA3C2nMRuUyVxWLugvj2uAuLEXnatnZm1viy7peSeEiIfAmVM5pgwhnOeU8zPshlVqsQk1fnvTFl-mV2FsCdEMJqXs-ywarc7PFpwHnoz1BYF3xnAVdcODRp3PvrGRltHD8gAmGNAtR9ChEMdbYMc-B69DrjxY3otDdtw1Lc1-K8WbECfrUGjidHCkNa2SzmQ8sJ1duFMF-zNT59n789Pb4sVXm-WL4vHNa55oSIuSirzolRC1IV0hkvKbMkFryphGtU0inNWEJc0TgjVCOpIbhynvFRFVbCSz7O7KXcE_3GwIeq9P8CQTmompWJSUCmSik6q9O8QwDo9QtsbOGpK9ImunujqRFef6GqePGzyhKQdthb-kv83fQM2gX1_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779276176</pqid></control><display><type>article</type><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><source>Springer Nature</source><creator>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</creator><creatorcontrib>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</creatorcontrib><description>Ga
2
O
3
has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga
2
O
3
MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga
2
O
3
MWs, possessing a light/dark current ratio of 10
7
and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga
2
O
3
MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga
2
O
3
MWs, and thus may push forward their future applications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4341-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Arrays ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Dark current ; Electrodes ; Gallium oxides ; Graphene ; Linear arrays ; Materials Science ; Nanotechnology ; Nanowires ; Photometers ; Research Article ; Tin</subject><ispartof>Nano research, 2022-08, Vol.15 (8), p.7631-7638</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</citedby><cites>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lu, Ya-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen-Feng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Gao-Hang</creatorcontrib><creatorcontrib>Lin, Chao-Nan</creatorcontrib><creatorcontrib>Chen, Xue-Xia</creatorcontrib><creatorcontrib>Zang, Jin-Hao</creatorcontrib><creatorcontrib>Zhao, Wen-Bo</creatorcontrib><creatorcontrib>Chen, Yan-Cheng</creatorcontrib><creatorcontrib>Zhang, Lei-Lei</creatorcontrib><creatorcontrib>Li, Yi-Zhe</creatorcontrib><creatorcontrib>Shan, Chong-Xin</creatorcontrib><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Ga
2
O
3
has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga
2
O
3
MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga
2
O
3
MWs, possessing a light/dark current ratio of 10
7
and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga
2
O
3
MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga
2
O
3
MWs, and thus may push forward their future applications.</description><subject>Arrays</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dark current</subject><subject>Electrodes</subject><subject>Gallium oxides</subject><subject>Graphene</subject><subject>Linear arrays</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photometers</subject><subject>Research Article</subject><subject>Tin</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqXwANwscTb4J7HjI6qgRarUA3C2nMRuUyVxWLugvj2uAuLEXnatnZm1viy7peSeEiIfAmVM5pgwhnOeU8zPshlVqsQk1fnvTFl-mV2FsCdEMJqXs-ywarc7PFpwHnoz1BYF3xnAVdcODRp3PvrGRltHD8gAmGNAtR9ChEMdbYMc-B69DrjxY3otDdtw1Lc1-K8WbECfrUGjidHCkNa2SzmQ8sJ1duFMF-zNT59n789Pb4sVXm-WL4vHNa55oSIuSirzolRC1IV0hkvKbMkFryphGtU0inNWEJc0TgjVCOpIbhynvFRFVbCSz7O7KXcE_3GwIeq9P8CQTmompWJSUCmSik6q9O8QwDo9QtsbOGpK9ImunujqRFef6GqePGzyhKQdthb-kv83fQM2gX1_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lu, Ya-Cong</creator><creator>Zhang, Zhen-Feng</creator><creator>Yang, Xun</creator><creator>He, Gao-Hang</creator><creator>Lin, Chao-Nan</creator><creator>Chen, Xue-Xia</creator><creator>Zang, Jin-Hao</creator><creator>Zhao, Wen-Bo</creator><creator>Chen, Yan-Cheng</creator><creator>Zhang, Lei-Lei</creator><creator>Li, Yi-Zhe</creator><creator>Shan, Chong-Xin</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220801</creationdate><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><author>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dark current</topic><topic>Electrodes</topic><topic>Gallium oxides</topic><topic>Graphene</topic><topic>Linear arrays</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photometers</topic><topic>Research Article</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ya-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen-Feng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Gao-Hang</creatorcontrib><creatorcontrib>Lin, Chao-Nan</creatorcontrib><creatorcontrib>Chen, Xue-Xia</creatorcontrib><creatorcontrib>Zang, Jin-Hao</creatorcontrib><creatorcontrib>Zhao, Wen-Bo</creatorcontrib><creatorcontrib>Chen, Yan-Cheng</creatorcontrib><creatorcontrib>Zhang, Lei-Lei</creatorcontrib><creatorcontrib>Li, Yi-Zhe</creatorcontrib><creatorcontrib>Shan, Chong-Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ya-Cong</au><au>Zhang, Zhen-Feng</au><au>Yang, Xun</au><au>He, Gao-Hang</au><au>Lin, Chao-Nan</au><au>Chen, Xue-Xia</au><au>Zang, Jin-Hao</au><au>Zhao, Wen-Bo</au><au>Chen, Yan-Cheng</au><au>Zhang, Lei-Lei</au><au>Li, Yi-Zhe</au><au>Shan, Chong-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>7631</spage><epage>7638</epage><pages>7631-7638</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ga
2
O
3
has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga
2
O
3
MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga
2
O
3
MWs, possessing a light/dark current ratio of 10
7
and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga
2
O
3
MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga
2
O
3
MWs, and thus may push forward their future applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4341-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-08, Vol.15 (8), p.7631-7638 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2779276176 |
source | Springer Nature |
subjects | Arrays Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Dark current Electrodes Gallium oxides Graphene Linear arrays Materials Science Nanotechnology Nanowires Photometers Research Article Tin |
title | High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20solar-blind%20photodetector%20arrays%20constructed%20from%20Sn-doped%20Ga2O3%20microwires%20via%20patterned%20electrodes&rft.jtitle=Nano%20research&rft.au=Lu,%20Ya-Cong&rft.date=2022-08-01&rft.volume=15&rft.issue=8&rft.spage=7631&rft.epage=7638&rft.pages=7631-7638&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4341-3&rft_dat=%3Cproquest_cross%3E2779276176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779276176&rft_id=info:pmid/&rfr_iscdi=true |