Loading…

High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes

Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2022-08, Vol.15 (8), p.7631-7638
Main Authors: Lu, Ya-Cong, Zhang, Zhen-Feng, Yang, Xun, He, Gao-Hang, Lin, Chao-Nan, Chen, Xue-Xia, Zang, Jin-Hao, Zhao, Wen-Bo, Chen, Yan-Cheng, Zhang, Lei-Lei, Li, Yi-Zhe, Shan, Chong-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283
cites cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283
container_end_page 7638
container_issue 8
container_start_page 7631
container_title Nano research
container_volume 15
creator Lu, Ya-Cong
Zhang, Zhen-Feng
Yang, Xun
He, Gao-Hang
Lin, Chao-Nan
Chen, Xue-Xia
Zang, Jin-Hao
Zhao, Wen-Bo
Chen, Yan-Cheng
Zhang, Lei-Lei
Li, Yi-Zhe
Shan, Chong-Xin
description Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga 2 O 3 MWs, possessing a light/dark current ratio of 10 7 and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga 2 O 3 MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga 2 O 3 MWs, and thus may push forward their future applications.
doi_str_mv 10.1007/s12274-022-4341-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779276176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779276176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwscTb4J7HjI6qgRarUA3C2nMRuUyVxWLugvj2uAuLEXnatnZm1viy7peSeEiIfAmVM5pgwhnOeU8zPshlVqsQk1fnvTFl-mV2FsCdEMJqXs-ywarc7PFpwHnoz1BYF3xnAVdcODRp3PvrGRltHD8gAmGNAtR9ChEMdbYMc-B69DrjxY3otDdtw1Lc1-K8WbECfrUGjidHCkNa2SzmQ8sJ1duFMF-zNT59n789Pb4sVXm-WL4vHNa55oSIuSirzolRC1IV0hkvKbMkFryphGtU0inNWEJc0TgjVCOpIbhynvFRFVbCSz7O7KXcE_3GwIeq9P8CQTmompWJSUCmSik6q9O8QwDo9QtsbOGpK9ImunujqRFef6GqePGzyhKQdthb-kv83fQM2gX1_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779276176</pqid></control><display><type>article</type><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><source>Springer Nature</source><creator>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</creator><creatorcontrib>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</creatorcontrib><description>Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga 2 O 3 MWs, possessing a light/dark current ratio of 10 7 and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga 2 O 3 MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga 2 O 3 MWs, and thus may push forward their future applications.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-4341-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Arrays ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Dark current ; Electrodes ; Gallium oxides ; Graphene ; Linear arrays ; Materials Science ; Nanotechnology ; Nanowires ; Photometers ; Research Article ; Tin</subject><ispartof>Nano research, 2022-08, Vol.15 (8), p.7631-7638</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</citedby><cites>FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lu, Ya-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen-Feng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Gao-Hang</creatorcontrib><creatorcontrib>Lin, Chao-Nan</creatorcontrib><creatorcontrib>Chen, Xue-Xia</creatorcontrib><creatorcontrib>Zang, Jin-Hao</creatorcontrib><creatorcontrib>Zhao, Wen-Bo</creatorcontrib><creatorcontrib>Chen, Yan-Cheng</creatorcontrib><creatorcontrib>Zhang, Lei-Lei</creatorcontrib><creatorcontrib>Li, Yi-Zhe</creatorcontrib><creatorcontrib>Shan, Chong-Xin</creatorcontrib><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga 2 O 3 MWs, possessing a light/dark current ratio of 10 7 and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga 2 O 3 MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga 2 O 3 MWs, and thus may push forward their future applications.</description><subject>Arrays</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dark current</subject><subject>Electrodes</subject><subject>Gallium oxides</subject><subject>Graphene</subject><subject>Linear arrays</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photometers</subject><subject>Research Article</subject><subject>Tin</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqXwANwscTb4J7HjI6qgRarUA3C2nMRuUyVxWLugvj2uAuLEXnatnZm1viy7peSeEiIfAmVM5pgwhnOeU8zPshlVqsQk1fnvTFl-mV2FsCdEMJqXs-ywarc7PFpwHnoz1BYF3xnAVdcODRp3PvrGRltHD8gAmGNAtR9ChEMdbYMc-B69DrjxY3otDdtw1Lc1-K8WbECfrUGjidHCkNa2SzmQ8sJ1duFMF-zNT59n789Pb4sVXm-WL4vHNa55oSIuSirzolRC1IV0hkvKbMkFryphGtU0inNWEJc0TgjVCOpIbhynvFRFVbCSz7O7KXcE_3GwIeq9P8CQTmompWJSUCmSik6q9O8QwDo9QtsbOGpK9ImunujqRFef6GqePGzyhKQdthb-kv83fQM2gX1_</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lu, Ya-Cong</creator><creator>Zhang, Zhen-Feng</creator><creator>Yang, Xun</creator><creator>He, Gao-Hang</creator><creator>Lin, Chao-Nan</creator><creator>Chen, Xue-Xia</creator><creator>Zang, Jin-Hao</creator><creator>Zhao, Wen-Bo</creator><creator>Chen, Yan-Cheng</creator><creator>Zhang, Lei-Lei</creator><creator>Li, Yi-Zhe</creator><creator>Shan, Chong-Xin</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220801</creationdate><title>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</title><author>Lu, Ya-Cong ; Zhang, Zhen-Feng ; Yang, Xun ; He, Gao-Hang ; Lin, Chao-Nan ; Chen, Xue-Xia ; Zang, Jin-Hao ; Zhao, Wen-Bo ; Chen, Yan-Cheng ; Zhang, Lei-Lei ; Li, Yi-Zhe ; Shan, Chong-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dark current</topic><topic>Electrodes</topic><topic>Gallium oxides</topic><topic>Graphene</topic><topic>Linear arrays</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photometers</topic><topic>Research Article</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ya-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen-Feng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Gao-Hang</creatorcontrib><creatorcontrib>Lin, Chao-Nan</creatorcontrib><creatorcontrib>Chen, Xue-Xia</creatorcontrib><creatorcontrib>Zang, Jin-Hao</creatorcontrib><creatorcontrib>Zhao, Wen-Bo</creatorcontrib><creatorcontrib>Chen, Yan-Cheng</creatorcontrib><creatorcontrib>Zhang, Lei-Lei</creatorcontrib><creatorcontrib>Li, Yi-Zhe</creatorcontrib><creatorcontrib>Shan, Chong-Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ya-Cong</au><au>Zhang, Zhen-Feng</au><au>Yang, Xun</au><au>He, Gao-Hang</au><au>Lin, Chao-Nan</au><au>Chen, Xue-Xia</au><au>Zang, Jin-Hao</au><au>Zhao, Wen-Bo</au><au>Chen, Yan-Cheng</au><au>Zhang, Lei-Lei</au><au>Li, Yi-Zhe</au><au>Shan, Chong-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>8</issue><spage>7631</spage><epage>7638</epage><pages>7631-7638</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ga 2 O 3 has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost. Although semiconductor microwires (MWs) possess unique optical and electronic characteristics, the performances of photodetectors developed from Ga 2 O 3 MWs are still less than satisfactory. Herein, we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga 2 O 3 MWs, possessing a light/dark current ratio of 10 7 and a responsivity of 2,409 A/W at 40 V. Moreover, a 1 × 10 solar-blind photodetector linear array is developed based on the Sn-doped Ga 2 O 3 MWs via a patterned-electrodes method. And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solar-blind imaging system. The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga 2 O 3 MWs, and thus may push forward their future applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-4341-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-08, Vol.15 (8), p.7631-7638
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2779276176
source Springer Nature
subjects Arrays
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Dark current
Electrodes
Gallium oxides
Graphene
Linear arrays
Materials Science
Nanotechnology
Nanowires
Photometers
Research Article
Tin
title High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20solar-blind%20photodetector%20arrays%20constructed%20from%20Sn-doped%20Ga2O3%20microwires%20via%20patterned%20electrodes&rft.jtitle=Nano%20research&rft.au=Lu,%20Ya-Cong&rft.date=2022-08-01&rft.volume=15&rft.issue=8&rft.spage=7631&rft.epage=7638&rft.pages=7631-7638&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-4341-3&rft_dat=%3Cproquest_cross%3E2779276176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5817458966c57fa3712e8363bb6ad9dd933250f745f669d61f04af313895b5283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779276176&rft_id=info:pmid/&rfr_iscdi=true