Loading…
Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling
A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transpo...
Saved in:
Published in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2023-02, Vol.23 (1), p.119-134 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3 |
container_end_page | 134 |
container_issue | 1 |
container_start_page | 119 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 23 |
creator | Zhou, Zhu Xing, Lei Venkatesan, Vijay Xu, Haoran Chen, Wenhua Xuan, Jin |
description | A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction. |
doi_str_mv | 10.1002/fuce.202200151 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779391997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779391997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYvtPL1EVXlIFWzoOnLsceLKjYOdFLLjE_hGvgRXRWXJamakc89IN4quCZ4TjOmtGgTMKaYUY5KSk2hCMpLOsiJNTo97kp1HF95vApIXRTKJ7LPdgUGddXbwCAyI3lkJSILXdeuRsg452IHzujKAvDVaIvuhA9KM0tkaWtQZ3nKHBBiD-iaI6gZtB9Pr78-vrhm9Fh5tg9Totr6MzhQ3Hq5-5zRa3y9fF4-z1cvD0-JuNRNxmpNZAoTzVHEJlCZUMh7jNGdxkSnFOJFUQCUJFZkSKit4DkxUmBAiBQlHXPF4Gt0cvJ2zbwP4vtzYwbXhZUnzYGKEsTxQ8wMlnPXegSo7p7fcjSXB5b7Ucl9qeSw1BNgh8K4NjP_Q5f16sfzL_gDrtn_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779391997</pqid></control><display><type>article</type><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</creator><creatorcontrib>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</creatorcontrib><description>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202200151</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Electrochemistry ; Electrodes ; Electrolysis ; Fuel cells ; graded porosity design ; Mass transport ; multi‐physics modeling ; Porosity ; reversible solid oxide cell ; SOEC ; SOFC ; Three dimensional models</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.119-134</ispartof><rights>2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</citedby><cites>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</cites><orcidid>0000-0001-5633-3689 ; 0000-0002-0360-8025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Zhu</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Venkatesan, Vijay</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</description><subject>Charge transport</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Fuel cells</subject><subject>graded porosity design</subject><subject>Mass transport</subject><subject>multi‐physics modeling</subject><subject>Porosity</subject><subject>reversible solid oxide cell</subject><subject>SOEC</subject><subject>SOFC</subject><subject>Three dimensional models</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYvtPL1EVXlIFWzoOnLsceLKjYOdFLLjE_hGvgRXRWXJamakc89IN4quCZ4TjOmtGgTMKaYUY5KSk2hCMpLOsiJNTo97kp1HF95vApIXRTKJ7LPdgUGddXbwCAyI3lkJSILXdeuRsg452IHzujKAvDVaIvuhA9KM0tkaWtQZ3nKHBBiD-iaI6gZtB9Pr78-vrhm9Fh5tg9Totr6MzhQ3Hq5-5zRa3y9fF4-z1cvD0-JuNRNxmpNZAoTzVHEJlCZUMh7jNGdxkSnFOJFUQCUJFZkSKit4DkxUmBAiBQlHXPF4Gt0cvJ2zbwP4vtzYwbXhZUnzYGKEsTxQ8wMlnPXegSo7p7fcjSXB5b7Ucl9qeSw1BNgh8K4NjP_Q5f16sfzL_gDrtn_K</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Zhou, Zhu</creator><creator>Xing, Lei</creator><creator>Venkatesan, Vijay</creator><creator>Xu, Haoran</creator><creator>Chen, Wenhua</creator><creator>Xuan, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5633-3689</orcidid><orcidid>https://orcid.org/0000-0002-0360-8025</orcidid></search><sort><creationdate>202302</creationdate><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><author>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transport</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Fuel cells</topic><topic>graded porosity design</topic><topic>Mass transport</topic><topic>multi‐physics modeling</topic><topic>Porosity</topic><topic>reversible solid oxide cell</topic><topic>SOEC</topic><topic>SOFC</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhu</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Venkatesan, Vijay</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhu</au><au>Xing, Lei</au><au>Venkatesan, Vijay</au><au>Xu, Haoran</au><au>Chen, Wenhua</au><au>Xuan, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202200151</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5633-3689</orcidid><orcidid>https://orcid.org/0000-0002-0360-8025</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.119-134 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_2779391997 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Charge transport Electrochemistry Electrodes Electrolysis Fuel cells graded porosity design Mass transport multi‐physics modeling Porosity reversible solid oxide cell SOEC SOFC Three dimensional models |
title | Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20porous%20electrode%20designs%20for%20reversible%20solid%20oxide%20hydrogen%20planar%20cell%20through%20multi%E2%80%90physics%20modeling&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhou,%20Zhu&rft.date=2023-02&rft.volume=23&rft.issue=1&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202200151&rft_dat=%3Cproquest_cross%3E2779391997%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779391997&rft_id=info:pmid/&rfr_iscdi=true |