Loading…

Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling

A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transpo...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2023-02, Vol.23 (1), p.119-134
Main Authors: Zhou, Zhu, Xing, Lei, Venkatesan, Vijay, Xu, Haoran, Chen, Wenhua, Xuan, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3
cites cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3
container_end_page 134
container_issue 1
container_start_page 119
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 23
creator Zhou, Zhu
Xing, Lei
Venkatesan, Vijay
Xu, Haoran
Chen, Wenhua
Xuan, Jin
description A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.
doi_str_mv 10.1002/fuce.202200151
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779391997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779391997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYvtPL1EVXlIFWzoOnLsceLKjYOdFLLjE_hGvgRXRWXJamakc89IN4quCZ4TjOmtGgTMKaYUY5KSk2hCMpLOsiJNTo97kp1HF95vApIXRTKJ7LPdgUGddXbwCAyI3lkJSILXdeuRsg452IHzujKAvDVaIvuhA9KM0tkaWtQZ3nKHBBiD-iaI6gZtB9Pr78-vrhm9Fh5tg9Totr6MzhQ3Hq5-5zRa3y9fF4-z1cvD0-JuNRNxmpNZAoTzVHEJlCZUMh7jNGdxkSnFOJFUQCUJFZkSKit4DkxUmBAiBQlHXPF4Gt0cvJ2zbwP4vtzYwbXhZUnzYGKEsTxQ8wMlnPXegSo7p7fcjSXB5b7Ucl9qeSw1BNgh8K4NjP_Q5f16sfzL_gDrtn_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779391997</pqid></control><display><type>article</type><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</creator><creatorcontrib>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</creatorcontrib><description>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202200151</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Electrochemistry ; Electrodes ; Electrolysis ; Fuel cells ; graded porosity design ; Mass transport ; multi‐physics modeling ; Porosity ; reversible solid oxide cell ; SOEC ; SOFC ; Three dimensional models</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.119-134</ispartof><rights>2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</citedby><cites>FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</cites><orcidid>0000-0001-5633-3689 ; 0000-0002-0360-8025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Zhu</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Venkatesan, Vijay</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</description><subject>Charge transport</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Fuel cells</subject><subject>graded porosity design</subject><subject>Mass transport</subject><subject>multi‐physics modeling</subject><subject>Porosity</subject><subject>reversible solid oxide cell</subject><subject>SOEC</subject><subject>SOFC</subject><subject>Three dimensional models</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYvtPL1EVXlIFWzoOnLsceLKjYOdFLLjE_hGvgRXRWXJamakc89IN4quCZ4TjOmtGgTMKaYUY5KSk2hCMpLOsiJNTo97kp1HF95vApIXRTKJ7LPdgUGddXbwCAyI3lkJSILXdeuRsg452IHzujKAvDVaIvuhA9KM0tkaWtQZ3nKHBBiD-iaI6gZtB9Pr78-vrhm9Fh5tg9Totr6MzhQ3Hq5-5zRa3y9fF4-z1cvD0-JuNRNxmpNZAoTzVHEJlCZUMh7jNGdxkSnFOJFUQCUJFZkSKit4DkxUmBAiBQlHXPF4Gt0cvJ2zbwP4vtzYwbXhZUnzYGKEsTxQ8wMlnPXegSo7p7fcjSXB5b7Ucl9qeSw1BNgh8K4NjP_Q5f16sfzL_gDrtn_K</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Zhou, Zhu</creator><creator>Xing, Lei</creator><creator>Venkatesan, Vijay</creator><creator>Xu, Haoran</creator><creator>Chen, Wenhua</creator><creator>Xuan, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5633-3689</orcidid><orcidid>https://orcid.org/0000-0002-0360-8025</orcidid></search><sort><creationdate>202302</creationdate><title>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</title><author>Zhou, Zhu ; Xing, Lei ; Venkatesan, Vijay ; Xu, Haoran ; Chen, Wenhua ; Xuan, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge transport</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Fuel cells</topic><topic>graded porosity design</topic><topic>Mass transport</topic><topic>multi‐physics modeling</topic><topic>Porosity</topic><topic>reversible solid oxide cell</topic><topic>SOEC</topic><topic>SOFC</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhu</creatorcontrib><creatorcontrib>Xing, Lei</creatorcontrib><creatorcontrib>Venkatesan, Vijay</creatorcontrib><creatorcontrib>Xu, Haoran</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhu</au><au>Xing, Lei</au><au>Venkatesan, Vijay</au><au>Xu, Haoran</au><au>Chen, Wenhua</au><au>Xuan, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>A comprehensive multiphysics 3D model of an anode‐supported planar reversible solid oxide cell (rSOC) with a half‐channel‐unit‐cell geometry is created and validated. The physical phenomena that are modeled include reversible electrochemistry/charge transport, coupled with momentum/mass/heat transport. Several electrode microstructures comprising the homogeneous and functionally graded porosity distributions are applied to the validated model, to evaluate and compare the current‐voltage (j‐V) performance in both fuel cell mode and electrolysis mode. The results indicate that increasing the porosity in a homogeneous porous electrode does not always promote the cell's j‐V performance. An optimal porosity emerges where the effect of porosity on the mass transport is maximized, which ranges between 0.5 and 0.7 in the working conditions of the present study. Compared with homogeneous porous electrodes, the heterogeneous porous electrode design with a functionally graded porosity distribution is found to be a potential option to better the overall j‐V performance of the rSOC. Furthermore, it is discovered that theoretically grading the porosity in the width direction (i.e., increasing porosity from the center of each gas channel to the center of each adjacent rib) brings an outsize benefit on the cell's performance, compared to the traditional way of improving the porosity along the cell thickness direction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202200151</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5633-3689</orcidid><orcidid>https://orcid.org/0000-0002-0360-8025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.23 (1), p.119-134
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_2779391997
source Wiley-Blackwell Read & Publish Collection
subjects Charge transport
Electrochemistry
Electrodes
Electrolysis
Fuel cells
graded porosity design
Mass transport
multi‐physics modeling
Porosity
reversible solid oxide cell
SOEC
SOFC
Three dimensional models
title Novel porous electrode designs for reversible solid oxide hydrogen planar cell through multi‐physics modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20porous%20electrode%20designs%20for%20reversible%20solid%20oxide%20hydrogen%20planar%20cell%20through%20multi%E2%80%90physics%20modeling&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhou,%20Zhu&rft.date=2023-02&rft.volume=23&rft.issue=1&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202200151&rft_dat=%3Cproquest_cross%3E2779391997%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-4e1aa5fade2242d9a30579386ff9a1d2cebd12c6fcf68a7e9cb0111dc1a7e3ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779391997&rft_id=info:pmid/&rfr_iscdi=true