Loading…

An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World

Seismic swarms are defined as a group of earthquakes occurring very close in time and space but without any distinctively large event triggering their occurrence. Up to now no simple law has been found to describe the swarm occurrence rate. Here we find an expression able to fit the average occurren...

Full description

Saved in:
Bibliographic Details
Published in:Earth and space science (Hoboken, N.J.) N.J.), 2023-02, Vol.10 (2), p.n/a
Main Authors: Godano, C., Tramelli, A., Mora, M., Taylor, W., Petrillo, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3
cites cdi_FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3
container_end_page n/a
container_issue 2
container_start_page
container_title Earth and space science (Hoboken, N.J.)
container_volume 10
creator Godano, C.
Tramelli, A.
Mora, M.
Taylor, W.
Petrillo, G.
description Seismic swarms are defined as a group of earthquakes occurring very close in time and space but without any distinctively large event triggering their occurrence. Up to now no simple law has been found to describe the swarm occurrence rate. Here we find an expression able to fit the average occurrence rate on some volcanic areas. This expression exhibits some differences in respect to the classical Omori law. Namely the c parameter of the Omori law is equal to zero and the power law decay of the average occurrence rate of the earthquakes is followed by an exponential decaying regime. Both the results can be interpreted in term of fluid injection and/or movements. Indeed this is a more impulsive phenomenon compared to the occurrence of a large earthquake, with a duration compatible with a c = 0. The exponential decay following the power law one could be explained by a viscoelastic relaxation of the stress induced by the injection and/or movements of fluids in the earth crust. Key Points We find an analytical expression of volcanic earthquakes occurrence rate We analyze some volcanic seismic catalogs We found some differences respect the traditional Omori law
doi_str_mv 10.1029/2022EA002534
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779450145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779450145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsNTufIABt6bONZMsQ4kXKBSMl2WYzpxgSpKpMyk1b29qFbpy9R043_nh_AhdUzKnhKV3jDCWZ4QwycUZmjDOeSRJIs5P5ks0C2FDCKFMxoSJCQpZh7NON0NfG5x_bT2EULsOV87j_gPwm2uM7sZdAXVoD9xr3wa8MmbnPXQG8LPuYY4zvNABcNHv7IBdhQvX_l07CLjufuLenW_sFbqodBNg9ssper3PXxaP0XL18LTIlpHmsUqjVFqhTUqsomthQSVaM2qBCVONSJRlfB2zShgruRQ24XwtgXBFRKxAJhWfoptj7ta7zx2Evty4nR-fDSVTKhWSUCFH6_ZoGe9C8FCVW1-32g8lJeWh2fK02VFnR31fNzD865Z5UTDKScq_AajReEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779450145</pqid></control><display><type>article</type><title>An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Godano, C. ; Tramelli, A. ; Mora, M. ; Taylor, W. ; Petrillo, G.</creator><creatorcontrib>Godano, C. ; Tramelli, A. ; Mora, M. ; Taylor, W. ; Petrillo, G.</creatorcontrib><description>Seismic swarms are defined as a group of earthquakes occurring very close in time and space but without any distinctively large event triggering their occurrence. Up to now no simple law has been found to describe the swarm occurrence rate. Here we find an expression able to fit the average occurrence rate on some volcanic areas. This expression exhibits some differences in respect to the classical Omori law. Namely the c parameter of the Omori law is equal to zero and the power law decay of the average occurrence rate of the earthquakes is followed by an exponential decaying regime. Both the results can be interpreted in term of fluid injection and/or movements. Indeed this is a more impulsive phenomenon compared to the occurrence of a large earthquake, with a duration compatible with a c = 0. The exponential decay following the power law one could be explained by a viscoelastic relaxation of the stress induced by the injection and/or movements of fluids in the earth crust. Key Points We find an analytical expression of volcanic earthquakes occurrence rate We analyze some volcanic seismic catalogs We found some differences respect the traditional Omori law</description><identifier>ISSN: 2333-5084</identifier><identifier>EISSN: 2333-5084</identifier><identifier>DOI: 10.1029/2022EA002534</identifier><language>eng</language><publisher>Hoboken: John Wiley &amp; Sons, Inc</publisher><subject>Aftershocks ; Decay ; Earth crust ; Earthquakes ; Injection ; Seismic activity ; Statistical analysis ; Stress concentration ; Volcanoes</subject><ispartof>Earth and space science (Hoboken, N.J.), 2023-02, Vol.10 (2), p.n/a</ispartof><rights>2022 Università degli Studi della Campania Luigi Vanvitelli.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3</citedby><cites>FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3</cites><orcidid>0000-0001-7571-6749 ; 0000-0002-9455-4789 ; 0000-0001-6259-5730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779450145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779450145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Godano, C.</creatorcontrib><creatorcontrib>Tramelli, A.</creatorcontrib><creatorcontrib>Mora, M.</creatorcontrib><creatorcontrib>Taylor, W.</creatorcontrib><creatorcontrib>Petrillo, G.</creatorcontrib><title>An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World</title><title>Earth and space science (Hoboken, N.J.)</title><description>Seismic swarms are defined as a group of earthquakes occurring very close in time and space but without any distinctively large event triggering their occurrence. Up to now no simple law has been found to describe the swarm occurrence rate. Here we find an expression able to fit the average occurrence rate on some volcanic areas. This expression exhibits some differences in respect to the classical Omori law. Namely the c parameter of the Omori law is equal to zero and the power law decay of the average occurrence rate of the earthquakes is followed by an exponential decaying regime. Both the results can be interpreted in term of fluid injection and/or movements. Indeed this is a more impulsive phenomenon compared to the occurrence of a large earthquake, with a duration compatible with a c = 0. The exponential decay following the power law one could be explained by a viscoelastic relaxation of the stress induced by the injection and/or movements of fluids in the earth crust. Key Points We find an analytical expression of volcanic earthquakes occurrence rate We analyze some volcanic seismic catalogs We found some differences respect the traditional Omori law</description><subject>Aftershocks</subject><subject>Decay</subject><subject>Earth crust</subject><subject>Earthquakes</subject><subject>Injection</subject><subject>Seismic activity</subject><subject>Statistical analysis</subject><subject>Stress concentration</subject><subject>Volcanoes</subject><issn>2333-5084</issn><issn>2333-5084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kMtKw0AUhgdRsNTufIABt6bONZMsQ4kXKBSMl2WYzpxgSpKpMyk1b29qFbpy9R043_nh_AhdUzKnhKV3jDCWZ4QwycUZmjDOeSRJIs5P5ks0C2FDCKFMxoSJCQpZh7NON0NfG5x_bT2EULsOV87j_gPwm2uM7sZdAXVoD9xr3wa8MmbnPXQG8LPuYY4zvNABcNHv7IBdhQvX_l07CLjufuLenW_sFbqodBNg9ssper3PXxaP0XL18LTIlpHmsUqjVFqhTUqsomthQSVaM2qBCVONSJRlfB2zShgruRQ24XwtgXBFRKxAJhWfoptj7ta7zx2Evty4nR-fDSVTKhWSUCFH6_ZoGe9C8FCVW1-32g8lJeWh2fK02VFnR31fNzD865Z5UTDKScq_AajReEc</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Godano, C.</creator><creator>Tramelli, A.</creator><creator>Mora, M.</creator><creator>Taylor, W.</creator><creator>Petrillo, G.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7571-6749</orcidid><orcidid>https://orcid.org/0000-0002-9455-4789</orcidid><orcidid>https://orcid.org/0000-0001-6259-5730</orcidid></search><sort><creationdate>202302</creationdate><title>An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World</title><author>Godano, C. ; Tramelli, A. ; Mora, M. ; Taylor, W. ; Petrillo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aftershocks</topic><topic>Decay</topic><topic>Earth crust</topic><topic>Earthquakes</topic><topic>Injection</topic><topic>Seismic activity</topic><topic>Statistical analysis</topic><topic>Stress concentration</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godano, C.</creatorcontrib><creatorcontrib>Tramelli, A.</creatorcontrib><creatorcontrib>Mora, M.</creatorcontrib><creatorcontrib>Taylor, W.</creatorcontrib><creatorcontrib>Petrillo, G.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Earth and space science (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godano, C.</au><au>Tramelli, A.</au><au>Mora, M.</au><au>Taylor, W.</au><au>Petrillo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World</atitle><jtitle>Earth and space science (Hoboken, N.J.)</jtitle><date>2023-02</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><epage>n/a</epage><issn>2333-5084</issn><eissn>2333-5084</eissn><abstract>Seismic swarms are defined as a group of earthquakes occurring very close in time and space but without any distinctively large event triggering their occurrence. Up to now no simple law has been found to describe the swarm occurrence rate. Here we find an expression able to fit the average occurrence rate on some volcanic areas. This expression exhibits some differences in respect to the classical Omori law. Namely the c parameter of the Omori law is equal to zero and the power law decay of the average occurrence rate of the earthquakes is followed by an exponential decaying regime. Both the results can be interpreted in term of fluid injection and/or movements. Indeed this is a more impulsive phenomenon compared to the occurrence of a large earthquake, with a duration compatible with a c = 0. The exponential decay following the power law one could be explained by a viscoelastic relaxation of the stress induced by the injection and/or movements of fluids in the earth crust. Key Points We find an analytical expression of volcanic earthquakes occurrence rate We analyze some volcanic seismic catalogs We found some differences respect the traditional Omori law</abstract><cop>Hoboken</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022EA002534</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7571-6749</orcidid><orcidid>https://orcid.org/0000-0002-9455-4789</orcidid><orcidid>https://orcid.org/0000-0001-6259-5730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2333-5084
ispartof Earth and space science (Hoboken, N.J.), 2023-02, Vol.10 (2), p.n/a
issn 2333-5084
2333-5084
language eng
recordid cdi_proquest_journals_2779450145
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Aftershocks
Decay
Earth crust
Earthquakes
Injection
Seismic activity
Statistical analysis
Stress concentration
Volcanoes
title An Analytic Expression for the Volcanic Seismic Swarms Occurrence Rate. A Case Study of Some Volcanoes in the World
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytic%20Expression%20for%20the%20Volcanic%20Seismic%20Swarms%20Occurrence%20Rate.%20A%20Case%20Study%20of%20Some%20Volcanoes%20in%20the%20World&rft.jtitle=Earth%20and%20space%20science%20(Hoboken,%20N.J.)&rft.au=Godano,%20C.&rft.date=2023-02&rft.volume=10&rft.issue=2&rft.epage=n/a&rft.issn=2333-5084&rft.eissn=2333-5084&rft_id=info:doi/10.1029/2022EA002534&rft_dat=%3Cproquest_cross%3E2779450145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3679-95d4ac90d71b4de78aa21de24cf1de87d23b62f4cd5354d833b5e0370467e58f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779450145&rft_id=info:pmid/&rfr_iscdi=true