Loading…

Effect of UFC on the Microscopic Pore Structure of Cemented Soil in Humic Acid Environment

Peat soil is widely distributed in the Dianchi Lake area of Yunnan, and the effect of the cement deep-mixing method on peat soil foundation is mainly affected by humic acid (HA). In this paper, a composite cement curing agent is formed by adding different proportions of ultra-fine cement (UFC) to or...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2023-02, Vol.15 (4), p.3241
Main Authors: Cao, Jing, Liu, Fangyi, Huang, Siyang, Liu, Hong, Song, Zhigang, Li, Jianyun, Liu, Guoshou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peat soil is widely distributed in the Dianchi Lake area of Yunnan, and the effect of the cement deep-mixing method on peat soil foundation is mainly affected by humic acid (HA). In this paper, a composite cement curing agent is formed by adding different proportions of ultra-fine cement (UFC) to ordinary Portland cement (OPC) and used to cure the HA-containing cohesive soil. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) are used to study the influence mechanism of UFC on the micropore structure of HA-containing cemented soil. The unconfined compressive strength test (UCS) is used to verify it. MIP, SEM, and XRD results show that UFC can significantly improve the microscopic pore structure of the samples. The hydration reaction rate of cement increases with the increase in the proportion of UFC, and the generated hydration products can fill the pores of the samples. The filling effect of hydration products on macropores is enhanced, and the pores change from fibrous filling to cemented filling. The enhanced cementation of the hydration products improved the loose and overhead structure inside the sample. Enhancing the cementation of hydration products improves the loose and overhead structure inside the sample and the integrity of cemented soil. UCS verified that the increase in the UFC proportion increases the HA-containing cemented soil strength. It achieves the purpose of reducing the amount of cement when curing peat soil foundations and supports reducing carbon emissions in practical projects.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15043241