Loading…

Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence

This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps t...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2023-02, Vol.15 (4), p.616
Main Authors: Pineda Sandoval, Joseph Daniel, Arciniega-Nevárez, José Antonio, Delgado-Galván, Xitlali, Ramos, Helena M., Pérez-Sánchez, Modesto, López-Jiménez, P. Amparo, Mora Rodríguez, Jesús
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83
cites cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83
container_end_page
container_issue 4
container_start_page 616
container_title Water (Basel)
container_volume 15
creator Pineda Sandoval, Joseph Daniel
Arciniega-Nevárez, José Antonio
Delgado-Galván, Xitlali
Ramos, Helena M.
Pérez-Sánchez, Modesto
López-Jiménez, P. Amparo
Mora Rodríguez, Jesús
description This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.
doi_str_mv 10.3390/w15040616
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779565580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752311604</galeid><sourcerecordid>A752311604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</originalsourceid><addsrcrecordid>eNpNUMtqwzAQFKWFhjSH_oGgpx7c6mFL8tGEPgKGFpIeejKKHo6CI7uSQsjf12lK6e5hd4eZWRgAbjF6oLREjwdcoBwxzC7AhCBOszzP8eW__RrMYtyisfJSiAJNwOcyBWMSrF27Sc63UHoN5xsZ2tOxTDK53kd4cGkD36tVhHWvfjBYDUN3PJGqkJx1yskOLnwyXeda45W5AVdWdtHMfucUfDw_reavWf32sphXdaYoxSkrubbSSlZgIuwaS26JkRaRkmGjKaJCG6HWwiotSs6UEpLnhBnNS8uI1IJOwd3Zdwj9197E1Gz7ffDjy4ZwXhasKAQaWQ9nVis70zhv-xSkGlubnVO9N9aNeMULQjFmKB8F92eBCn2MwdhmCG4nw7HBqDml3fylTb8BbvVxcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779565580</pqid></control><display><type>article</type><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><source>Publicly Available Content Database</source><creator>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</creator><creatorcontrib>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</creatorcontrib><description>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15040616</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air quality management ; Artificial intelligence ; Battery chargers ; Bicycles ; Carbon dioxide ; Clean technology ; Climate change ; Drinking water ; Economic impact ; Electric power production ; Electric rates ; Electric vehicles ; Electricity ; Electricity consumption ; Emissions ; Energy consumption ; Energy industry ; Energy recovery ; Impact analysis ; Lighting ; Maximization ; Methodology ; Monitoring ; Multiple objective analysis ; Optimization ; Optimization techniques ; Pressure ; Pressure reduction ; Pumps ; Quality of life ; Return on investment ; Smart cities ; Society ; Sustainable development ; Turbines ; Utility poles ; Utility rates</subject><ispartof>Water (Basel), 2023-02, Vol.15 (4), p.616</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</citedby><cites>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</cites><orcidid>0000-0001-7283-0239 ; 0000-0001-7524-1579 ; 0000-0002-2639-0540 ; 0000-0002-9028-9711 ; 0000-0002-4192-8249 ; 0000-0001-8316-7778 ; 0000-0002-7043-3683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779565580/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779565580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Pineda Sandoval, Joseph Daniel</creatorcontrib><creatorcontrib>Arciniega-Nevárez, José Antonio</creatorcontrib><creatorcontrib>Delgado-Galván, Xitlali</creatorcontrib><creatorcontrib>Ramos, Helena M.</creatorcontrib><creatorcontrib>Pérez-Sánchez, Modesto</creatorcontrib><creatorcontrib>López-Jiménez, P. Amparo</creatorcontrib><creatorcontrib>Mora Rodríguez, Jesús</creatorcontrib><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><title>Water (Basel)</title><description>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</description><subject>Air quality management</subject><subject>Artificial intelligence</subject><subject>Battery chargers</subject><subject>Bicycles</subject><subject>Carbon dioxide</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>Drinking water</subject><subject>Economic impact</subject><subject>Electric power production</subject><subject>Electric rates</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy recovery</subject><subject>Impact analysis</subject><subject>Lighting</subject><subject>Maximization</subject><subject>Methodology</subject><subject>Monitoring</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pressure</subject><subject>Pressure reduction</subject><subject>Pumps</subject><subject>Quality of life</subject><subject>Return on investment</subject><subject>Smart cities</subject><subject>Society</subject><subject>Sustainable development</subject><subject>Turbines</subject><subject>Utility poles</subject><subject>Utility rates</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtqwzAQFKWFhjSH_oGgpx7c6mFL8tGEPgKGFpIeejKKHo6CI7uSQsjf12lK6e5hd4eZWRgAbjF6oLREjwdcoBwxzC7AhCBOszzP8eW__RrMYtyisfJSiAJNwOcyBWMSrF27Sc63UHoN5xsZ2tOxTDK53kd4cGkD36tVhHWvfjBYDUN3PJGqkJx1yskOLnwyXeda45W5AVdWdtHMfucUfDw_reavWf32sphXdaYoxSkrubbSSlZgIuwaS26JkRaRkmGjKaJCG6HWwiotSs6UEpLnhBnNS8uI1IJOwd3Zdwj9197E1Gz7ffDjy4ZwXhasKAQaWQ9nVis70zhv-xSkGlubnVO9N9aNeMULQjFmKB8F92eBCn2MwdhmCG4nw7HBqDml3fylTb8BbvVxcA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Pineda Sandoval, Joseph Daniel</creator><creator>Arciniega-Nevárez, José Antonio</creator><creator>Delgado-Galván, Xitlali</creator><creator>Ramos, Helena M.</creator><creator>Pérez-Sánchez, Modesto</creator><creator>López-Jiménez, P. Amparo</creator><creator>Mora Rodríguez, Jesús</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7283-0239</orcidid><orcidid>https://orcid.org/0000-0001-7524-1579</orcidid><orcidid>https://orcid.org/0000-0002-2639-0540</orcidid><orcidid>https://orcid.org/0000-0002-9028-9711</orcidid><orcidid>https://orcid.org/0000-0002-4192-8249</orcidid><orcidid>https://orcid.org/0000-0001-8316-7778</orcidid><orcidid>https://orcid.org/0000-0002-7043-3683</orcidid></search><sort><creationdate>20230201</creationdate><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><author>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air quality management</topic><topic>Artificial intelligence</topic><topic>Battery chargers</topic><topic>Bicycles</topic><topic>Carbon dioxide</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>Drinking water</topic><topic>Economic impact</topic><topic>Electric power production</topic><topic>Electric rates</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy recovery</topic><topic>Impact analysis</topic><topic>Lighting</topic><topic>Maximization</topic><topic>Methodology</topic><topic>Monitoring</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pressure</topic><topic>Pressure reduction</topic><topic>Pumps</topic><topic>Quality of life</topic><topic>Return on investment</topic><topic>Smart cities</topic><topic>Society</topic><topic>Sustainable development</topic><topic>Turbines</topic><topic>Utility poles</topic><topic>Utility rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pineda Sandoval, Joseph Daniel</creatorcontrib><creatorcontrib>Arciniega-Nevárez, José Antonio</creatorcontrib><creatorcontrib>Delgado-Galván, Xitlali</creatorcontrib><creatorcontrib>Ramos, Helena M.</creatorcontrib><creatorcontrib>Pérez-Sánchez, Modesto</creatorcontrib><creatorcontrib>López-Jiménez, P. Amparo</creatorcontrib><creatorcontrib>Mora Rodríguez, Jesús</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pineda Sandoval, Joseph Daniel</au><au>Arciniega-Nevárez, José Antonio</au><au>Delgado-Galván, Xitlali</au><au>Ramos, Helena M.</au><au>Pérez-Sánchez, Modesto</au><au>López-Jiménez, P. Amparo</au><au>Mora Rodríguez, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</atitle><jtitle>Water (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>616</spage><pages>616-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15040616</doi><orcidid>https://orcid.org/0000-0001-7283-0239</orcidid><orcidid>https://orcid.org/0000-0001-7524-1579</orcidid><orcidid>https://orcid.org/0000-0002-2639-0540</orcidid><orcidid>https://orcid.org/0000-0002-9028-9711</orcidid><orcidid>https://orcid.org/0000-0002-4192-8249</orcidid><orcidid>https://orcid.org/0000-0001-8316-7778</orcidid><orcidid>https://orcid.org/0000-0002-7043-3683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2023-02, Vol.15 (4), p.616
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2779565580
source Publicly Available Content Database
subjects Air quality management
Artificial intelligence
Battery chargers
Bicycles
Carbon dioxide
Clean technology
Climate change
Drinking water
Economic impact
Electric power production
Electric rates
Electric vehicles
Electricity
Electricity consumption
Emissions
Energy consumption
Energy industry
Energy recovery
Impact analysis
Lighting
Maximization
Methodology
Monitoring
Multiple objective analysis
Optimization
Optimization techniques
Pressure
Pressure reduction
Pumps
Quality of life
Return on investment
Smart cities
Society
Sustainable development
Turbines
Utility poles
Utility rates
title Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Street%20Lighting%20and%20Charging%20Stations%20with%20PATs%20Location%20Applying%20Artificial%20Intelligence&rft.jtitle=Water%20(Basel)&rft.au=Pineda%20Sandoval,%20Joseph%20Daniel&rft.date=2023-02-01&rft.volume=15&rft.issue=4&rft.spage=616&rft.pages=616-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15040616&rft_dat=%3Cgale_proqu%3EA752311604%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779565580&rft_id=info:pmid/&rft_galeid=A752311604&rfr_iscdi=true