Loading…
Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence
This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps t...
Saved in:
Published in: | Water (Basel) 2023-02, Vol.15 (4), p.616 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83 |
container_end_page | |
container_issue | 4 |
container_start_page | 616 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Pineda Sandoval, Joseph Daniel Arciniega-Nevárez, José Antonio Delgado-Galván, Xitlali Ramos, Helena M. Pérez-Sánchez, Modesto López-Jiménez, P. Amparo Mora Rodríguez, Jesús |
description | This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day. |
doi_str_mv | 10.3390/w15040616 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779565580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752311604</galeid><sourcerecordid>A752311604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</originalsourceid><addsrcrecordid>eNpNUMtqwzAQFKWFhjSH_oGgpx7c6mFL8tGEPgKGFpIeejKKHo6CI7uSQsjf12lK6e5hd4eZWRgAbjF6oLREjwdcoBwxzC7AhCBOszzP8eW__RrMYtyisfJSiAJNwOcyBWMSrF27Sc63UHoN5xsZ2tOxTDK53kd4cGkD36tVhHWvfjBYDUN3PJGqkJx1yskOLnwyXeda45W5AVdWdtHMfucUfDw_reavWf32sphXdaYoxSkrubbSSlZgIuwaS26JkRaRkmGjKaJCG6HWwiotSs6UEpLnhBnNS8uI1IJOwd3Zdwj9197E1Gz7ffDjy4ZwXhasKAQaWQ9nVis70zhv-xSkGlubnVO9N9aNeMULQjFmKB8F92eBCn2MwdhmCG4nw7HBqDml3fylTb8BbvVxcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779565580</pqid></control><display><type>article</type><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><source>Publicly Available Content Database</source><creator>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</creator><creatorcontrib>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</creatorcontrib><description>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15040616</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air quality management ; Artificial intelligence ; Battery chargers ; Bicycles ; Carbon dioxide ; Clean technology ; Climate change ; Drinking water ; Economic impact ; Electric power production ; Electric rates ; Electric vehicles ; Electricity ; Electricity consumption ; Emissions ; Energy consumption ; Energy industry ; Energy recovery ; Impact analysis ; Lighting ; Maximization ; Methodology ; Monitoring ; Multiple objective analysis ; Optimization ; Optimization techniques ; Pressure ; Pressure reduction ; Pumps ; Quality of life ; Return on investment ; Smart cities ; Society ; Sustainable development ; Turbines ; Utility poles ; Utility rates</subject><ispartof>Water (Basel), 2023-02, Vol.15 (4), p.616</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</citedby><cites>FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</cites><orcidid>0000-0001-7283-0239 ; 0000-0001-7524-1579 ; 0000-0002-2639-0540 ; 0000-0002-9028-9711 ; 0000-0002-4192-8249 ; 0000-0001-8316-7778 ; 0000-0002-7043-3683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779565580/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779565580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Pineda Sandoval, Joseph Daniel</creatorcontrib><creatorcontrib>Arciniega-Nevárez, José Antonio</creatorcontrib><creatorcontrib>Delgado-Galván, Xitlali</creatorcontrib><creatorcontrib>Ramos, Helena M.</creatorcontrib><creatorcontrib>Pérez-Sánchez, Modesto</creatorcontrib><creatorcontrib>López-Jiménez, P. Amparo</creatorcontrib><creatorcontrib>Mora Rodríguez, Jesús</creatorcontrib><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><title>Water (Basel)</title><description>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</description><subject>Air quality management</subject><subject>Artificial intelligence</subject><subject>Battery chargers</subject><subject>Bicycles</subject><subject>Carbon dioxide</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>Drinking water</subject><subject>Economic impact</subject><subject>Electric power production</subject><subject>Electric rates</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy recovery</subject><subject>Impact analysis</subject><subject>Lighting</subject><subject>Maximization</subject><subject>Methodology</subject><subject>Monitoring</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pressure</subject><subject>Pressure reduction</subject><subject>Pumps</subject><subject>Quality of life</subject><subject>Return on investment</subject><subject>Smart cities</subject><subject>Society</subject><subject>Sustainable development</subject><subject>Turbines</subject><subject>Utility poles</subject><subject>Utility rates</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUMtqwzAQFKWFhjSH_oGgpx7c6mFL8tGEPgKGFpIeejKKHo6CI7uSQsjf12lK6e5hd4eZWRgAbjF6oLREjwdcoBwxzC7AhCBOszzP8eW__RrMYtyisfJSiAJNwOcyBWMSrF27Sc63UHoN5xsZ2tOxTDK53kd4cGkD36tVhHWvfjBYDUN3PJGqkJx1yskOLnwyXeda45W5AVdWdtHMfucUfDw_reavWf32sphXdaYoxSkrubbSSlZgIuwaS26JkRaRkmGjKaJCG6HWwiotSs6UEpLnhBnNS8uI1IJOwd3Zdwj9197E1Gz7ffDjy4ZwXhasKAQaWQ9nVis70zhv-xSkGlubnVO9N9aNeMULQjFmKB8F92eBCn2MwdhmCG4nw7HBqDml3fylTb8BbvVxcA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Pineda Sandoval, Joseph Daniel</creator><creator>Arciniega-Nevárez, José Antonio</creator><creator>Delgado-Galván, Xitlali</creator><creator>Ramos, Helena M.</creator><creator>Pérez-Sánchez, Modesto</creator><creator>López-Jiménez, P. Amparo</creator><creator>Mora Rodríguez, Jesús</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7283-0239</orcidid><orcidid>https://orcid.org/0000-0001-7524-1579</orcidid><orcidid>https://orcid.org/0000-0002-2639-0540</orcidid><orcidid>https://orcid.org/0000-0002-9028-9711</orcidid><orcidid>https://orcid.org/0000-0002-4192-8249</orcidid><orcidid>https://orcid.org/0000-0001-8316-7778</orcidid><orcidid>https://orcid.org/0000-0002-7043-3683</orcidid></search><sort><creationdate>20230201</creationdate><title>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</title><author>Pineda Sandoval, Joseph Daniel ; Arciniega-Nevárez, José Antonio ; Delgado-Galván, Xitlali ; Ramos, Helena M. ; Pérez-Sánchez, Modesto ; López-Jiménez, P. Amparo ; Mora Rodríguez, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air quality management</topic><topic>Artificial intelligence</topic><topic>Battery chargers</topic><topic>Bicycles</topic><topic>Carbon dioxide</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>Drinking water</topic><topic>Economic impact</topic><topic>Electric power production</topic><topic>Electric rates</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy recovery</topic><topic>Impact analysis</topic><topic>Lighting</topic><topic>Maximization</topic><topic>Methodology</topic><topic>Monitoring</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pressure</topic><topic>Pressure reduction</topic><topic>Pumps</topic><topic>Quality of life</topic><topic>Return on investment</topic><topic>Smart cities</topic><topic>Society</topic><topic>Sustainable development</topic><topic>Turbines</topic><topic>Utility poles</topic><topic>Utility rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pineda Sandoval, Joseph Daniel</creatorcontrib><creatorcontrib>Arciniega-Nevárez, José Antonio</creatorcontrib><creatorcontrib>Delgado-Galván, Xitlali</creatorcontrib><creatorcontrib>Ramos, Helena M.</creatorcontrib><creatorcontrib>Pérez-Sánchez, Modesto</creatorcontrib><creatorcontrib>López-Jiménez, P. Amparo</creatorcontrib><creatorcontrib>Mora Rodríguez, Jesús</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pineda Sandoval, Joseph Daniel</au><au>Arciniega-Nevárez, José Antonio</au><au>Delgado-Galván, Xitlali</au><au>Ramos, Helena M.</au><au>Pérez-Sánchez, Modesto</au><au>López-Jiménez, P. Amparo</au><au>Mora Rodríguez, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence</atitle><jtitle>Water (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>616</spage><pages>616-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>This research proposes a methodology with multi-objective optimization for the placement of Pumps operating As Turbines (PATs), energizing street lighting, devices for monitoring the water network, and charging stations for small electric vehicles such as bikes and scooters. This methodology helps to find the most profitable project for benefiting life quality and energy recovery through pumps operating as turbines, replacing virtual pressure reduction valves to locate the best point for decreasing pressure. PATs are selected by maximizing power recovery and minimizing pressure in the system as well as maximizing recoverable energy. Benefits analyzed include the reduction of carbon dioxide emissions and fuel use, as well as the saving of electricity consumption and benefiting socio-economic impact with street lighting, monitoring, and charging station. It was considered that each PAT proposed by the methodology will supply a street light pole, a station for monitoring the water network, and a charging station; under these established conditions, the return on investment is up to 1.07 at 12 years, with a power generation of 60 kWh per day.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15040616</doi><orcidid>https://orcid.org/0000-0001-7283-0239</orcidid><orcidid>https://orcid.org/0000-0001-7524-1579</orcidid><orcidid>https://orcid.org/0000-0002-2639-0540</orcidid><orcidid>https://orcid.org/0000-0002-9028-9711</orcidid><orcidid>https://orcid.org/0000-0002-4192-8249</orcidid><orcidid>https://orcid.org/0000-0001-8316-7778</orcidid><orcidid>https://orcid.org/0000-0002-7043-3683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-02, Vol.15 (4), p.616 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2779565580 |
source | Publicly Available Content Database |
subjects | Air quality management Artificial intelligence Battery chargers Bicycles Carbon dioxide Clean technology Climate change Drinking water Economic impact Electric power production Electric rates Electric vehicles Electricity Electricity consumption Emissions Energy consumption Energy industry Energy recovery Impact analysis Lighting Maximization Methodology Monitoring Multiple objective analysis Optimization Optimization techniques Pressure Pressure reduction Pumps Quality of life Return on investment Smart cities Society Sustainable development Turbines Utility poles Utility rates |
title | Street Lighting and Charging Stations with PATs Location Applying Artificial Intelligence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Street%20Lighting%20and%20Charging%20Stations%20with%20PATs%20Location%20Applying%20Artificial%20Intelligence&rft.jtitle=Water%20(Basel)&rft.au=Pineda%20Sandoval,%20Joseph%20Daniel&rft.date=2023-02-01&rft.volume=15&rft.issue=4&rft.spage=616&rft.pages=616-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15040616&rft_dat=%3Cgale_proqu%3EA752311604%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-97dfafa65128fb1a7f2eaf02961ed3038de8cb8fcd8976cc8a7426ed79f62ad83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779565580&rft_id=info:pmid/&rft_galeid=A752311604&rfr_iscdi=true |