Loading…

Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron

A medical 2.1 MW 40-vane [Formula Omitted]-band coaxial magnetron is designed and analyzed using a 3-D particle-in-cell (PIC) simulation. For realistic simulation, the magnetic field profile from the 3-D magnetic circuit and the structure of the output window are included in the simulation. A freque...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2023-03, Vol.70 (3), p.1262-1269
Main Authors: Lee, Jeong-Hun, Kim, Geun-Ju, Kim, Sanghoon, Lee, Yong-Seok, Kim, Insoo S., Jang, Kwang-Ho, Kim, Jung-Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c139t-dc01abfd2af70eedd20a404b75e0fc7d5162d4ab3523a6b17c828684c30576703
container_end_page 1269
container_issue 3
container_start_page 1262
container_title IEEE transactions on electron devices
container_volume 70
creator Lee, Jeong-Hun
Kim, Geun-Ju
Kim, Sanghoon
Lee, Yong-Seok
Kim, Insoo S.
Jang, Kwang-Ho
Kim, Jung-Il
description A medical 2.1 MW 40-vane [Formula Omitted]-band coaxial magnetron is designed and analyzed using a 3-D particle-in-cell (PIC) simulation. For realistic simulation, the magnetic field profile from the 3-D magnetic circuit and the structure of the output window are included in the simulation. A frequency tuner is located inside the coaxial resonator to control the operating frequency, and the output power is measured at the WR-112 waveguide located behind the output window. Using the operating conditions with an anode voltage of 35.8 kV and a magnetic field of 0.595 T, a maximum output power of 2.1 MW with an efficiency of 53.6% is measured in the stable [Formula Omitted]-mode resulting from the 20-electron spokes. The frequency tuner is moved down and up by [Formula Omitted] along the axial direction, and the frequency bandwidth is 72 MHz from 9.272 to 9.344 GHz with the tuning parameter of 0.12 MHz/[Formula Omitted]. In addition, the output performance is simulated to investigate the effect of dimensional parameters such as the coupling slot width and transformer length.
doi_str_mv 10.1109/TED.2023.3236349
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779658752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779658752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c139t-dc01abfd2af70eedd20a404b75e0fc7d5162d4ab3523a6b17c828684c30576703</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw52iJs8v6ETs5QlqgUisQlMfN2tgOSpUmxUkl-Pekak-7q5mdkT5CrjlMOIfsdjWbTgQIOZFCaqmyEzLiSWJYppU-JSMAnrJMpvKcXHTdeji1UmJE7GvAuur6ylHJpvQF47DWgc0bloe6pm_VZldjX7UNbUuKdBl85bCmYsLp8pMqYB_YBPpF2T02nuYt_laDvMTvJvSxbS7JWYl1F66Oc0zeH2ar_Iktnh_n-d2COS6znnkHHIvSCywNhOC9AFSgCpMEKJ3xCdfCKyxkIiTqghuXilSnyklIjDYgx-TmkLuN7c8udL1dt7vYDJVWGJPpJDXD65jAweVi23UxlHYbqw3GP8vB7jHaAaPdY7RHjPIf10BhzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779658752</pqid></control><display><type>article</type><title>Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Jeong-Hun ; Kim, Geun-Ju ; Kim, Sanghoon ; Lee, Yong-Seok ; Kim, Insoo S. ; Jang, Kwang-Ho ; Kim, Jung-Il</creator><creatorcontrib>Lee, Jeong-Hun ; Kim, Geun-Ju ; Kim, Sanghoon ; Lee, Yong-Seok ; Kim, Insoo S. ; Jang, Kwang-Ho ; Kim, Jung-Il</creatorcontrib><description>A medical 2.1 MW 40-vane [Formula Omitted]-band coaxial magnetron is designed and analyzed using a 3-D particle-in-cell (PIC) simulation. For realistic simulation, the magnetic field profile from the 3-D magnetic circuit and the structure of the output window are included in the simulation. A frequency tuner is located inside the coaxial resonator to control the operating frequency, and the output power is measured at the WR-112 waveguide located behind the output window. Using the operating conditions with an anode voltage of 35.8 kV and a magnetic field of 0.595 T, a maximum output power of 2.1 MW with an efficiency of 53.6% is measured in the stable [Formula Omitted]-mode resulting from the 20-electron spokes. The frequency tuner is moved down and up by [Formula Omitted] along the axial direction, and the frequency bandwidth is 72 MHz from 9.272 to 9.344 GHz with the tuning parameter of 0.12 MHz/[Formula Omitted]. In addition, the output performance is simulated to investigate the effect of dimensional parameters such as the coupling slot width and transformer length.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3236349</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Magnetic circuits ; Magnetic fields ; Parameters ; Particle in cell technique ; Simulation ; Spokes ; Waveguides</subject><ispartof>IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1262-1269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c139t-dc01abfd2af70eedd20a404b75e0fc7d5162d4ab3523a6b17c828684c30576703</cites><orcidid>0000-0002-0397-8309 ; 0000-0003-4927-9746 ; 0000-0003-0416-5091 ; 0000-0001-6260-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Jeong-Hun</creatorcontrib><creatorcontrib>Kim, Geun-Ju</creatorcontrib><creatorcontrib>Kim, Sanghoon</creatorcontrib><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Kim, Insoo S.</creatorcontrib><creatorcontrib>Jang, Kwang-Ho</creatorcontrib><creatorcontrib>Kim, Jung-Il</creatorcontrib><title>Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron</title><title>IEEE transactions on electron devices</title><description>A medical 2.1 MW 40-vane [Formula Omitted]-band coaxial magnetron is designed and analyzed using a 3-D particle-in-cell (PIC) simulation. For realistic simulation, the magnetic field profile from the 3-D magnetic circuit and the structure of the output window are included in the simulation. A frequency tuner is located inside the coaxial resonator to control the operating frequency, and the output power is measured at the WR-112 waveguide located behind the output window. Using the operating conditions with an anode voltage of 35.8 kV and a magnetic field of 0.595 T, a maximum output power of 2.1 MW with an efficiency of 53.6% is measured in the stable [Formula Omitted]-mode resulting from the 20-electron spokes. The frequency tuner is moved down and up by [Formula Omitted] along the axial direction, and the frequency bandwidth is 72 MHz from 9.272 to 9.344 GHz with the tuning parameter of 0.12 MHz/[Formula Omitted]. In addition, the output performance is simulated to investigate the effect of dimensional parameters such as the coupling slot width and transformer length.</description><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Parameters</subject><subject>Particle in cell technique</subject><subject>Simulation</subject><subject>Spokes</subject><subject>Waveguides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqVw52iJs8v6ETs5QlqgUisQlMfN2tgOSpUmxUkl-Pekak-7q5mdkT5CrjlMOIfsdjWbTgQIOZFCaqmyEzLiSWJYppU-JSMAnrJMpvKcXHTdeji1UmJE7GvAuur6ylHJpvQF47DWgc0bloe6pm_VZldjX7UNbUuKdBl85bCmYsLp8pMqYB_YBPpF2T02nuYt_laDvMTvJvSxbS7JWYl1F66Oc0zeH2ar_Iktnh_n-d2COS6znnkHHIvSCywNhOC9AFSgCpMEKJ3xCdfCKyxkIiTqghuXilSnyklIjDYgx-TmkLuN7c8udL1dt7vYDJVWGJPpJDXD65jAweVi23UxlHYbqw3GP8vB7jHaAaPdY7RHjPIf10BhzA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lee, Jeong-Hun</creator><creator>Kim, Geun-Ju</creator><creator>Kim, Sanghoon</creator><creator>Lee, Yong-Seok</creator><creator>Kim, Insoo S.</creator><creator>Jang, Kwang-Ho</creator><creator>Kim, Jung-Il</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0397-8309</orcidid><orcidid>https://orcid.org/0000-0003-4927-9746</orcidid><orcidid>https://orcid.org/0000-0003-0416-5091</orcidid><orcidid>https://orcid.org/0000-0001-6260-2320</orcidid></search><sort><creationdate>20230301</creationdate><title>Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron</title><author>Lee, Jeong-Hun ; Kim, Geun-Ju ; Kim, Sanghoon ; Lee, Yong-Seok ; Kim, Insoo S. ; Jang, Kwang-Ho ; Kim, Jung-Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c139t-dc01abfd2af70eedd20a404b75e0fc7d5162d4ab3523a6b17c828684c30576703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Parameters</topic><topic>Particle in cell technique</topic><topic>Simulation</topic><topic>Spokes</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong-Hun</creatorcontrib><creatorcontrib>Kim, Geun-Ju</creatorcontrib><creatorcontrib>Kim, Sanghoon</creatorcontrib><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Kim, Insoo S.</creatorcontrib><creatorcontrib>Jang, Kwang-Ho</creatorcontrib><creatorcontrib>Kim, Jung-Il</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeong-Hun</au><au>Kim, Geun-Ju</au><au>Kim, Sanghoon</au><au>Lee, Yong-Seok</au><au>Kim, Insoo S.</au><au>Jang, Kwang-Ho</au><au>Kim, Jung-Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>70</volume><issue>3</issue><spage>1262</spage><epage>1269</epage><pages>1262-1269</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><abstract>A medical 2.1 MW 40-vane [Formula Omitted]-band coaxial magnetron is designed and analyzed using a 3-D particle-in-cell (PIC) simulation. For realistic simulation, the magnetic field profile from the 3-D magnetic circuit and the structure of the output window are included in the simulation. A frequency tuner is located inside the coaxial resonator to control the operating frequency, and the output power is measured at the WR-112 waveguide located behind the output window. Using the operating conditions with an anode voltage of 35.8 kV and a magnetic field of 0.595 T, a maximum output power of 2.1 MW with an efficiency of 53.6% is measured in the stable [Formula Omitted]-mode resulting from the 20-electron spokes. The frequency tuner is moved down and up by [Formula Omitted] along the axial direction, and the frequency bandwidth is 72 MHz from 9.272 to 9.344 GHz with the tuning parameter of 0.12 MHz/[Formula Omitted]. In addition, the output performance is simulated to investigate the effect of dimensional parameters such as the coupling slot width and transformer length.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TED.2023.3236349</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0397-8309</orcidid><orcidid>https://orcid.org/0000-0003-4927-9746</orcidid><orcidid>https://orcid.org/0000-0003-0416-5091</orcidid><orcidid>https://orcid.org/0000-0001-6260-2320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-03, Vol.70 (3), p.1262-1269
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2779658752
source IEEE Electronic Library (IEL) Journals
subjects Magnetic circuits
Magnetic fields
Parameters
Particle in cell technique
Simulation
Spokes
Waveguides
title Realistic 3-D Particle-In-Cell Simulation of a Medical 2.1 MW 40-Vane X -Band Coaxial Magnetron
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%203-D%20Particle-In-Cell%20Simulation%20of%20a%20Medical%202.1%20MW%2040-Vane%20X%20-Band%20Coaxial%20Magnetron&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lee,%20Jeong-Hun&rft.date=2023-03-01&rft.volume=70&rft.issue=3&rft.spage=1262&rft.epage=1269&rft.pages=1262-1269&rft.issn=0018-9383&rft.eissn=1557-9646&rft_id=info:doi/10.1109/TED.2023.3236349&rft_dat=%3Cproquest_cross%3E2779658752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c139t-dc01abfd2af70eedd20a404b75e0fc7d5162d4ab3523a6b17c828684c30576703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779658752&rft_id=info:pmid/&rfr_iscdi=true