Loading…
Detecting tree and wire entanglements with deep learning
Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increas...
Saved in:
Published in: | Trees (Berlin, West) West), 2023-02, Vol.37 (1), p.147-159 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13 |
container_end_page | 159 |
container_issue | 1 |
container_start_page | 147 |
container_title | Trees (Berlin, West) |
container_volume | 37 |
creator | Oliveira, Artur André Buckeridge, Marcos S. Hirata, Roberto |
description | Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements. |
doi_str_mv | 10.1007/s00468-022-02305-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780246774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780246774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkt3NHqVqFQpeeg_JZlJb2rQmW8Rvb3QFbx6G-cPvvYHH2DXCLQK0dxlANZqDEKUk1BxO2ASVFFwIXZ-yCXQSOeoOztlFzhsAkA2KCdMPNFA_rOOqGhJRZaOvPtaJKoqDjast7cqQy2l4qzzRodqSTbHgl-ws2G2mq98-Zcunx-XsmS9e5y-z-wXvJXYDR-F8AKJgvfDoGrTOaaeclyI4W0vCUGtFqgffaB2w1X3Zul65GrRHOWU3o-0h7d-PlAez2R9TLB-NaDUI1bStKpQYqT7tc04UzCGtdzZ9GgTzHZAZAzIlIPMTkIEikqMoFziuKP1Z_6P6AjHoaLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780246774</pqid></control><display><type>article</type><title>Detecting tree and wire entanglements with deep learning</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</creator><creatorcontrib>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</creatorcontrib><description>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</description><identifier>ISSN: 0931-1890</identifier><identifier>EISSN: 1432-2285</identifier><identifier>DOI: 10.1007/s00468-022-02305-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Air pollution ; Biomedical and Life Sciences ; Communication ; Deep learning ; Electric contacts ; Forestry ; Life Sciences ; Plant Anatomy/Development ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Pollution control ; Qualitative analysis ; Review ; Trees ; Urban heat islands ; Urban Trees ; Wiring</subject><ispartof>Trees (Berlin, West), 2023-02, Vol.37 (1), p.147-159</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</citedby><cites>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</cites><orcidid>0000-0002-3606-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Oliveira, Artur André</creatorcontrib><creatorcontrib>Buckeridge, Marcos S.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><title>Detecting tree and wire entanglements with deep learning</title><title>Trees (Berlin, West)</title><addtitle>Trees</addtitle><description>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</description><subject>Agriculture</subject><subject>Air pollution</subject><subject>Biomedical and Life Sciences</subject><subject>Communication</subject><subject>Deep learning</subject><subject>Electric contacts</subject><subject>Forestry</subject><subject>Life Sciences</subject><subject>Plant Anatomy/Development</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollution control</subject><subject>Qualitative analysis</subject><subject>Review</subject><subject>Trees</subject><subject>Urban heat islands</subject><subject>Urban Trees</subject><subject>Wiring</subject><issn>0931-1890</issn><issn>1432-2285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkt3NHqVqFQpeeg_JZlJb2rQmW8Rvb3QFbx6G-cPvvYHH2DXCLQK0dxlANZqDEKUk1BxO2ASVFFwIXZ-yCXQSOeoOztlFzhsAkA2KCdMPNFA_rOOqGhJRZaOvPtaJKoqDjast7cqQy2l4qzzRodqSTbHgl-ws2G2mq98-Zcunx-XsmS9e5y-z-wXvJXYDR-F8AKJgvfDoGrTOaaeclyI4W0vCUGtFqgffaB2w1X3Zul65GrRHOWU3o-0h7d-PlAez2R9TLB-NaDUI1bStKpQYqT7tc04UzCGtdzZ9GgTzHZAZAzIlIPMTkIEikqMoFziuKP1Z_6P6AjHoaLM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Oliveira, Artur André</creator><creator>Buckeridge, Marcos S.</creator><creator>Hirata, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3606-1687</orcidid></search><sort><creationdate>20230201</creationdate><title>Detecting tree and wire entanglements with deep learning</title><author>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Air pollution</topic><topic>Biomedical and Life Sciences</topic><topic>Communication</topic><topic>Deep learning</topic><topic>Electric contacts</topic><topic>Forestry</topic><topic>Life Sciences</topic><topic>Plant Anatomy/Development</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollution control</topic><topic>Qualitative analysis</topic><topic>Review</topic><topic>Trees</topic><topic>Urban heat islands</topic><topic>Urban Trees</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Artur André</creatorcontrib><creatorcontrib>Buckeridge, Marcos S.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><jtitle>Trees (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Artur André</au><au>Buckeridge, Marcos S.</au><au>Hirata, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting tree and wire entanglements with deep learning</atitle><jtitle>Trees (Berlin, West)</jtitle><stitle>Trees</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>37</volume><issue>1</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0931-1890</issn><eissn>1432-2285</eissn><abstract>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00468-022-02305-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3606-1687</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0931-1890 |
ispartof | Trees (Berlin, West), 2023-02, Vol.37 (1), p.147-159 |
issn | 0931-1890 1432-2285 |
language | eng |
recordid | cdi_proquest_journals_2780246774 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Agriculture Air pollution Biomedical and Life Sciences Communication Deep learning Electric contacts Forestry Life Sciences Plant Anatomy/Development Plant Pathology Plant Physiology Plant Sciences Pollution control Qualitative analysis Review Trees Urban heat islands Urban Trees Wiring |
title | Detecting tree and wire entanglements with deep learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20tree%20and%20wire%20entanglements%20with%20deep%20learning&rft.jtitle=Trees%20(Berlin,%20West)&rft.au=Oliveira,%20Artur%20Andr%C3%A9&rft.date=2023-02-01&rft.volume=37&rft.issue=1&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0931-1890&rft.eissn=1432-2285&rft_id=info:doi/10.1007/s00468-022-02305-0&rft_dat=%3Cproquest_cross%3E2780246774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780246774&rft_id=info:pmid/&rfr_iscdi=true |