Loading…

Detecting tree and wire entanglements with deep learning

Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increas...

Full description

Saved in:
Bibliographic Details
Published in:Trees (Berlin, West) West), 2023-02, Vol.37 (1), p.147-159
Main Authors: Oliveira, Artur André, Buckeridge, Marcos S., Hirata, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13
cites cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13
container_end_page 159
container_issue 1
container_start_page 147
container_title Trees (Berlin, West)
container_volume 37
creator Oliveira, Artur André
Buckeridge, Marcos S.
Hirata, Roberto
description Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.
doi_str_mv 10.1007/s00468-022-02305-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780246774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780246774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkt3NHqVqFQpeeg_JZlJb2rQmW8Rvb3QFbx6G-cPvvYHH2DXCLQK0dxlANZqDEKUk1BxO2ASVFFwIXZ-yCXQSOeoOztlFzhsAkA2KCdMPNFA_rOOqGhJRZaOvPtaJKoqDjast7cqQy2l4qzzRodqSTbHgl-ws2G2mq98-Zcunx-XsmS9e5y-z-wXvJXYDR-F8AKJgvfDoGrTOaaeclyI4W0vCUGtFqgffaB2w1X3Zul65GrRHOWU3o-0h7d-PlAez2R9TLB-NaDUI1bStKpQYqT7tc04UzCGtdzZ9GgTzHZAZAzIlIPMTkIEikqMoFziuKP1Z_6P6AjHoaLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780246774</pqid></control><display><type>article</type><title>Detecting tree and wire entanglements with deep learning</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</creator><creatorcontrib>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</creatorcontrib><description>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</description><identifier>ISSN: 0931-1890</identifier><identifier>EISSN: 1432-2285</identifier><identifier>DOI: 10.1007/s00468-022-02305-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Air pollution ; Biomedical and Life Sciences ; Communication ; Deep learning ; Electric contacts ; Forestry ; Life Sciences ; Plant Anatomy/Development ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Pollution control ; Qualitative analysis ; Review ; Trees ; Urban heat islands ; Urban Trees ; Wiring</subject><ispartof>Trees (Berlin, West), 2023-02, Vol.37 (1), p.147-159</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</citedby><cites>FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</cites><orcidid>0000-0002-3606-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Oliveira, Artur André</creatorcontrib><creatorcontrib>Buckeridge, Marcos S.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><title>Detecting tree and wire entanglements with deep learning</title><title>Trees (Berlin, West)</title><addtitle>Trees</addtitle><description>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</description><subject>Agriculture</subject><subject>Air pollution</subject><subject>Biomedical and Life Sciences</subject><subject>Communication</subject><subject>Deep learning</subject><subject>Electric contacts</subject><subject>Forestry</subject><subject>Life Sciences</subject><subject>Plant Anatomy/Development</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollution control</subject><subject>Qualitative analysis</subject><subject>Review</subject><subject>Trees</subject><subject>Urban heat islands</subject><subject>Urban Trees</subject><subject>Wiring</subject><issn>0931-1890</issn><issn>1432-2285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMkt3NHqVqFQpeeg_JZlJb2rQmW8Rvb3QFbx6G-cPvvYHH2DXCLQK0dxlANZqDEKUk1BxO2ASVFFwIXZ-yCXQSOeoOztlFzhsAkA2KCdMPNFA_rOOqGhJRZaOvPtaJKoqDjast7cqQy2l4qzzRodqSTbHgl-ws2G2mq98-Zcunx-XsmS9e5y-z-wXvJXYDR-F8AKJgvfDoGrTOaaeclyI4W0vCUGtFqgffaB2w1X3Zul65GrRHOWU3o-0h7d-PlAez2R9TLB-NaDUI1bStKpQYqT7tc04UzCGtdzZ9GgTzHZAZAzIlIPMTkIEikqMoFziuKP1Z_6P6AjHoaLM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Oliveira, Artur André</creator><creator>Buckeridge, Marcos S.</creator><creator>Hirata, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3606-1687</orcidid></search><sort><creationdate>20230201</creationdate><title>Detecting tree and wire entanglements with deep learning</title><author>Oliveira, Artur André ; Buckeridge, Marcos S. ; Hirata, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Air pollution</topic><topic>Biomedical and Life Sciences</topic><topic>Communication</topic><topic>Deep learning</topic><topic>Electric contacts</topic><topic>Forestry</topic><topic>Life Sciences</topic><topic>Plant Anatomy/Development</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollution control</topic><topic>Qualitative analysis</topic><topic>Review</topic><topic>Trees</topic><topic>Urban heat islands</topic><topic>Urban Trees</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Artur André</creatorcontrib><creatorcontrib>Buckeridge, Marcos S.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><jtitle>Trees (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Artur André</au><au>Buckeridge, Marcos S.</au><au>Hirata, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting tree and wire entanglements with deep learning</atitle><jtitle>Trees (Berlin, West)</jtitle><stitle>Trees</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>37</volume><issue>1</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0931-1890</issn><eissn>1432-2285</eissn><abstract>Power and communication line corridors are usually mixed with urban trees, and this mixing can be the source of multiple issues like fires and communication failures. Nevertheless, urban trees are a valuable resource to the city as they dissipate heat island effects, reduce air pollution and increase general health perception. This work proposes a deep learning approach to detect trees entangled to power and communication lines using street-level imagery and perform quick quantitative and qualitative analyses based on the Grad-CAM++ method. Testing the method was performed using 1001 images from urban trees from the cities of São Paulo and Porto Alegre (both in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and 75.6% for Porto Alegre), suggesting that the methodology could be suitable in the future for city management to avoid risks of accidents due to contact between trees and electrical wiring. This text describes the method, a new data set of urban images, the experimental setup design and tests, and some possible future improvements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00468-022-02305-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3606-1687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0931-1890
ispartof Trees (Berlin, West), 2023-02, Vol.37 (1), p.147-159
issn 0931-1890
1432-2285
language eng
recordid cdi_proquest_journals_2780246774
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Agriculture
Air pollution
Biomedical and Life Sciences
Communication
Deep learning
Electric contacts
Forestry
Life Sciences
Plant Anatomy/Development
Plant Pathology
Plant Physiology
Plant Sciences
Pollution control
Qualitative analysis
Review
Trees
Urban heat islands
Urban Trees
Wiring
title Detecting tree and wire entanglements with deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20tree%20and%20wire%20entanglements%20with%20deep%20learning&rft.jtitle=Trees%20(Berlin,%20West)&rft.au=Oliveira,%20Artur%20Andr%C3%A9&rft.date=2023-02-01&rft.volume=37&rft.issue=1&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0931-1890&rft.eissn=1432-2285&rft_id=info:doi/10.1007/s00468-022-02305-0&rft_dat=%3Cproquest_cross%3E2780246774%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-12bdf0eefad2d1b61abb8b4bd32fba53e1f584e4c0d688f178c4e49c4b508d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780246774&rft_id=info:pmid/&rfr_iscdi=true