Loading…
Functions with bounded Hessian-Schatten variation: density, variational and extremality properties
In this paper we analyze in detail a few questions related to the theory of functions with bounded \(p\)-Hessian-Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the \(p\)-Hessian-Scha...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ambrosio, Luigi Brena, Camillo Conti, Sergio |
description | In this paper we analyze in detail a few questions related to the theory of functions with bounded \(p\)-Hessian-Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the \(p\)-Hessian-Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension \(d\), using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the \(p\)-Hessian-Schatten total variation are CPWL. Finally, we prove existence of minimizers of certain relevant functionals involving the \(p\)-Hessian-Schatten total variation in the critical dimension \(d=2\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2780249905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780249905</sourcerecordid><originalsourceid>FETCH-proquest_journals_27802499053</originalsourceid><addsrcrecordid>eNqNzF0LgjAYBeARBEn5HwbdJqxNU7uNxPu6l-necGLT9m59_PsMgm67OnDOw5mRgAuxjbKY8wUJETvGGN-lPElEQOrCm8bpwSB9aNfSevBGgaIlIGppolPTSufA0Lu0Wn7gniowqN1r8-tkT6VRFJ7OwlX200hHO4xgnQZckflF9gjhN5dkXRzPhzKayM0DuqobvJ0-sOJpxnic5ywR_6k3KENG8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780249905</pqid></control><display><type>article</type><title>Functions with bounded Hessian-Schatten variation: density, variational and extremality properties</title><source>Publicly Available Content Database</source><creator>Ambrosio, Luigi ; Brena, Camillo ; Conti, Sergio</creator><creatorcontrib>Ambrosio, Luigi ; Brena, Camillo ; Conti, Sergio</creatorcontrib><description>In this paper we analyze in detail a few questions related to the theory of functions with bounded \(p\)-Hessian-Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the \(p\)-Hessian-Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension \(d\), using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the \(p\)-Hessian-Schatten total variation are CPWL. Finally, we prove existence of minimizers of certain relevant functionals involving the \(p\)-Hessian-Schatten total variation in the critical dimension \(d=2\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Density ; Inverse problem theory ; Machine learning</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2780249905?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Brena, Camillo</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><title>Functions with bounded Hessian-Schatten variation: density, variational and extremality properties</title><title>arXiv.org</title><description>In this paper we analyze in detail a few questions related to the theory of functions with bounded \(p\)-Hessian-Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the \(p\)-Hessian-Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension \(d\), using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the \(p\)-Hessian-Schatten total variation are CPWL. Finally, we prove existence of minimizers of certain relevant functionals involving the \(p\)-Hessian-Schatten total variation in the critical dimension \(d=2\).</description><subject>Continuity (mathematics)</subject><subject>Density</subject><subject>Inverse problem theory</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzF0LgjAYBeARBEn5HwbdJqxNU7uNxPu6l-necGLT9m59_PsMgm67OnDOw5mRgAuxjbKY8wUJETvGGN-lPElEQOrCm8bpwSB9aNfSevBGgaIlIGppolPTSufA0Lu0Wn7gniowqN1r8-tkT6VRFJ7OwlX200hHO4xgnQZckflF9gjhN5dkXRzPhzKayM0DuqobvJ0-sOJpxnic5ywR_6k3KENG8A</recordid><startdate>20230224</startdate><enddate>20230224</enddate><creator>Ambrosio, Luigi</creator><creator>Brena, Camillo</creator><creator>Conti, Sergio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230224</creationdate><title>Functions with bounded Hessian-Schatten variation: density, variational and extremality properties</title><author>Ambrosio, Luigi ; Brena, Camillo ; Conti, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27802499053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuity (mathematics)</topic><topic>Density</topic><topic>Inverse problem theory</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ambrosio, Luigi</creatorcontrib><creatorcontrib>Brena, Camillo</creatorcontrib><creatorcontrib>Conti, Sergio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosio, Luigi</au><au>Brena, Camillo</au><au>Conti, Sergio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functions with bounded Hessian-Schatten variation: density, variational and extremality properties</atitle><jtitle>arXiv.org</jtitle><date>2023-02-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper we analyze in detail a few questions related to the theory of functions with bounded \(p\)-Hessian-Schatten total variation, which are relevant in connection with the theory of inverse problems and machine learning. We prove an optimal density result, relative to the \(p\)-Hessian-Schatten total variation, of continuous piecewise linear (CPWL) functions in any space dimension \(d\), using a construction based on a mesh whose local orientation is adapted to the function to be approximated. We show that not all extremal functions with respect to the \(p\)-Hessian-Schatten total variation are CPWL. Finally, we prove existence of minimizers of certain relevant functionals involving the \(p\)-Hessian-Schatten total variation in the critical dimension \(d=2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2780249905 |
source | Publicly Available Content Database |
subjects | Continuity (mathematics) Density Inverse problem theory Machine learning |
title | Functions with bounded Hessian-Schatten variation: density, variational and extremality properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functions%20with%20bounded%20Hessian-Schatten%20variation:%20density,%20variational%20and%20extremality%20properties&rft.jtitle=arXiv.org&rft.au=Ambrosio,%20Luigi&rft.date=2023-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2780249905%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27802499053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780249905&rft_id=info:pmid/&rfr_iscdi=true |