Loading…
On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space
In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be rep...
Saved in:
Published in: | Siberian mathematical journal 2023, Vol.64 (1), p.103-110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3 |
container_end_page | 110 |
container_issue | 1 |
container_start_page | 103 |
container_title | Siberian mathematical journal |
container_volume | 64 |
creator | Kytmanov, A. A. Osipov, N. N. Tikhomirov, S. A. |
description | In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials. |
doi_str_mv | 10.1134/S0037446623010123 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780438071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780438071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisQ74kTjxElU8KhWKCKwjxxnTlDyKnVSw4F_6Lf0ybIrEArGa0dxz75UGoVOCzwlh0UWGMUuiiHPKMMGEsj00InHCQkE53kcjL4deP0RH1i6xgzAXI_Q5b7ebfgHB_dAUYIJOB1NjoBxUVdQQTLpm1bXQ9tYrnrvryqGugmwlFfhbBk1le-nhR9A1vFdrt8n2dbuhQbYAuQbn_Sl5MN0SVO-R74BjdKBlbeHkZ47R8_XV0-Q2nM1vppPLWagY4X1IeMJFoiMca8GFIFLolMSSCMxBxIU7AsSpLmnMICoTJZkiBS0LybBSDJdsjM52uSvTvQ1g-3zZDaZ1lTlNUhyxFCfEUWRHKdNZa0DnK1M10nzkBOf-y_mfLzsP3XmsY9sXML_J_5u-AMBIgLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780438071</pqid></control><display><type>article</type><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><source>Springer Link</source><creator>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</creator><creatorcontrib>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</creatorcontrib><description>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623010123</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Infinite series ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Polynomials ; Sheaves</subject><ispartof>Siberian mathematical journal, 2023, Vol.64 (1), p.103-110</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 1, pp. 123–132.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</citedby><cites>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</cites><orcidid>0000-0002-7409-8464 ; 0000-0003-3325-099X ; 0000-0002-8894-609X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kytmanov, A. A.</creatorcontrib><creatorcontrib>Osipov, N. N.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</description><subject>Infinite series</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Sheaves</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewisQ74kTjxElU8KhWKCKwjxxnTlDyKnVSw4F_6Lf0ybIrEArGa0dxz75UGoVOCzwlh0UWGMUuiiHPKMMGEsj00InHCQkE53kcjL4deP0RH1i6xgzAXI_Q5b7ebfgHB_dAUYIJOB1NjoBxUVdQQTLpm1bXQ9tYrnrvryqGugmwlFfhbBk1le-nhR9A1vFdrt8n2dbuhQbYAuQbn_Sl5MN0SVO-R74BjdKBlbeHkZ47R8_XV0-Q2nM1vppPLWagY4X1IeMJFoiMca8GFIFLolMSSCMxBxIU7AsSpLmnMICoTJZkiBS0LybBSDJdsjM52uSvTvQ1g-3zZDaZ1lTlNUhyxFCfEUWRHKdNZa0DnK1M10nzkBOf-y_mfLzsP3XmsY9sXML_J_5u-AMBIgLY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kytmanov, A. A.</creator><creator>Osipov, N. N.</creator><creator>Tikhomirov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7409-8464</orcidid><orcidid>https://orcid.org/0000-0003-3325-099X</orcidid><orcidid>https://orcid.org/0000-0002-8894-609X</orcidid></search><sort><creationdate>2023</creationdate><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><author>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Infinite series</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Sheaves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kytmanov, A. A.</creatorcontrib><creatorcontrib>Osipov, N. N.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kytmanov, A. A.</au><au>Osipov, N. N.</au><au>Tikhomirov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><spage>103</spage><epage>110</epage><pages>103-110</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623010123</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7409-8464</orcidid><orcidid>https://orcid.org/0000-0003-3325-099X</orcidid><orcidid>https://orcid.org/0000-0002-8894-609X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2023, Vol.64 (1), p.103-110 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2780438071 |
source | Springer Link |
subjects | Infinite series Isomorphism Mathematics Mathematics and Statistics Polynomials Sheaves |
title | On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%C2%A0the%20Number%20of%20Irreducible%20Components%20of%20the%20Moduli%20Space%20of%20Semistable%20Reflexive%20Rank%C2%A02%20Sheaves%20on%C2%A0the%20Projective%20Space&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kytmanov,%20A.%20A.&rft.date=2023&rft.volume=64&rft.issue=1&rft.spage=103&rft.epage=110&rft.pages=103-110&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623010123&rft_dat=%3Cproquest_cross%3E2780438071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780438071&rft_id=info:pmid/&rfr_iscdi=true |