Loading…

On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space

In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be rep...

Full description

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2023, Vol.64 (1), p.103-110
Main Authors: Kytmanov, A. A., Osipov, N. N., Tikhomirov, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3
cites cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3
container_end_page 110
container_issue 1
container_start_page 103
container_title Siberian mathematical journal
container_volume 64
creator Kytmanov, A. A.
Osipov, N. N.
Tikhomirov, S. A.
description In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.
doi_str_mv 10.1134/S0037446623010123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780438071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780438071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisQ74kTjxElU8KhWKCKwjxxnTlDyKnVSw4F_6Lf0ybIrEArGa0dxz75UGoVOCzwlh0UWGMUuiiHPKMMGEsj00InHCQkE53kcjL4deP0RH1i6xgzAXI_Q5b7ebfgHB_dAUYIJOB1NjoBxUVdQQTLpm1bXQ9tYrnrvryqGugmwlFfhbBk1le-nhR9A1vFdrt8n2dbuhQbYAuQbn_Sl5MN0SVO-R74BjdKBlbeHkZ47R8_XV0-Q2nM1vppPLWagY4X1IeMJFoiMca8GFIFLolMSSCMxBxIU7AsSpLmnMICoTJZkiBS0LybBSDJdsjM52uSvTvQ1g-3zZDaZ1lTlNUhyxFCfEUWRHKdNZa0DnK1M10nzkBOf-y_mfLzsP3XmsY9sXML_J_5u-AMBIgLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780438071</pqid></control><display><type>article</type><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><source>Springer Link</source><creator>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</creator><creatorcontrib>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</creatorcontrib><description>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623010123</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Infinite series ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Polynomials ; Sheaves</subject><ispartof>Siberian mathematical journal, 2023, Vol.64 (1), p.103-110</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 1, pp. 123–132.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</citedby><cites>FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</cites><orcidid>0000-0002-7409-8464 ; 0000-0003-3325-099X ; 0000-0002-8894-609X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kytmanov, A. A.</creatorcontrib><creatorcontrib>Osipov, N. N.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</description><subject>Infinite series</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Sheaves</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewisQ74kTjxElU8KhWKCKwjxxnTlDyKnVSw4F_6Lf0ybIrEArGa0dxz75UGoVOCzwlh0UWGMUuiiHPKMMGEsj00InHCQkE53kcjL4deP0RH1i6xgzAXI_Q5b7ebfgHB_dAUYIJOB1NjoBxUVdQQTLpm1bXQ9tYrnrvryqGugmwlFfhbBk1le-nhR9A1vFdrt8n2dbuhQbYAuQbn_Sl5MN0SVO-R74BjdKBlbeHkZ47R8_XV0-Q2nM1vppPLWagY4X1IeMJFoiMca8GFIFLolMSSCMxBxIU7AsSpLmnMICoTJZkiBS0LybBSDJdsjM52uSvTvQ1g-3zZDaZ1lTlNUhyxFCfEUWRHKdNZa0DnK1M10nzkBOf-y_mfLzsP3XmsY9sXML_J_5u-AMBIgLY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kytmanov, A. A.</creator><creator>Osipov, N. N.</creator><creator>Tikhomirov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7409-8464</orcidid><orcidid>https://orcid.org/0000-0003-3325-099X</orcidid><orcidid>https://orcid.org/0000-0002-8894-609X</orcidid></search><sort><creationdate>2023</creationdate><title>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</title><author>Kytmanov, A. A. ; Osipov, N. N. ; Tikhomirov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Infinite series</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Sheaves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kytmanov, A. A.</creatorcontrib><creatorcontrib>Osipov, N. N.</creatorcontrib><creatorcontrib>Tikhomirov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kytmanov, A. A.</au><au>Osipov, N. N.</au><au>Tikhomirov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><spage>103</spage><epage>110</epage><pages>103-110</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite series of irreducible components of the moduli space of semistable nonlocally free reflexive rank 2 sheaves on the complex three-dimensional projective space with even first Chern class whose second and third Chern classes can be represented as polynomials of a special form in three integer variables. A similar series for reflexive sheaves with odd first Chern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In this article, we prove the uniqueness of the components in these series for the Chern classes represented by the above-mentioned polynomials and propose some criteria for the existence of these components. We formulate a conjecture on the number of components of the moduli space of stable rank 2 sheaves on a three-dimensional projective space such that the generic points of these components correspond to isomorphism classes of reflexive sheaves with fixed Chern classes defined by the same polynomials.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623010123</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7409-8464</orcidid><orcidid>https://orcid.org/0000-0003-3325-099X</orcidid><orcidid>https://orcid.org/0000-0002-8894-609X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2023, Vol.64 (1), p.103-110
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2780438071
source Springer Link
subjects Infinite series
Isomorphism
Mathematics
Mathematics and Statistics
Polynomials
Sheaves
title On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%C2%A0the%20Number%20of%20Irreducible%20Components%20of%20the%20Moduli%20Space%20of%20Semistable%20Reflexive%20Rank%C2%A02%20Sheaves%20on%C2%A0the%20Projective%20Space&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kytmanov,%20A.%20A.&rft.date=2023&rft.volume=64&rft.issue=1&rft.spage=103&rft.epage=110&rft.pages=103-110&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623010123&rft_dat=%3Cproquest_cross%3E2780438071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-167697f405f96991a9f815a1906e95bf96ee58fd253e4d7ca3c1b2dba30cc30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780438071&rft_id=info:pmid/&rfr_iscdi=true