Loading…

DCLP: Neural Architecture Predictor with Curriculum Contrastive Learning

Neural predictors have shown great potential in the evaluation process of neural architecture search (NAS). However, current predictor-based approaches overlook the fact that training a predictor necessitates a considerable number of trained neural networks as the labeled training set, which is cost...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-12
Main Authors: Zheng, Shenghe, Wang, Hongzhi, Mu, Tianyu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neural predictors have shown great potential in the evaluation process of neural architecture search (NAS). However, current predictor-based approaches overlook the fact that training a predictor necessitates a considerable number of trained neural networks as the labeled training set, which is costly to obtain. Therefore, the critical issue in utilizing predictors for NAS is to train a high-performance predictor using as few trained neural networks as possible. Although some methods attempt to address this problem through unsupervised learning, they often result in inaccurate predictions. We argue that the unsupervised tasks intended for the common graph data are too challenging for neural networks, causing unsupervised training to be susceptible to performance crashes in NAS. To address this issue, we propose a Curricumum-guided Contrastive Learning framework for neural Predictor (DCLP). Our method simplifies the contrastive task by designing a novel curriculum to enhance the stability of unlabeled training data distribution during contrastive training. Specifically, we propose a scheduler that ranks the training data according to the contrastive difficulty of each data and then inputs them to the contrastive learner in order. This approach concentrates the training data distribution and makes contrastive training more efficient. By using our method, the contrastive learner incrementally learns feature representations via unsupervised data on a smooth learning curve, avoiding performance crashes that may occur with excessively variable training data distributions. We experimentally demonstrate that DCLP has high accuracy and efficiency compared with existing predictors, and shows promising potential to discover superior architectures in various search spaces when combined with search strategies. Our code is available at: https://github.com/Zhengsh123/DCLP.
ISSN:2331-8422