Loading…

Precover completing domains and approximations

In this paper, we introduce an -precover completing domain , with being a class of modules and not necessarily a single module, and then investigate when every module in has an -preenvelope. Epic and monic -preenvelopes are also investigated. This study plays a key role in setting a general framewor...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2023-03, Vol.51 (3), p.915-929
Main Authors: Amzil, Houda, Bennis, Driss, Rozas, J. R. García, Oyonarte, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-2c909c34d840744184cffe5c3589ee296ea62b7a92de55641410470f54623a433
container_end_page 929
container_issue 3
container_start_page 915
container_title Communications in algebra
container_volume 51
creator Amzil, Houda
Bennis, Driss
Rozas, J. R. García
Oyonarte, Luis
description In this paper, we introduce an -precover completing domain , with being a class of modules and not necessarily a single module, and then investigate when every module in has an -preenvelope. Epic and monic -preenvelopes are also investigated. This study plays a key role in setting a general framework for several classical results. Then, for a class of finitely generated modules , we introduce the notion of -R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler modules. This enabled us to find easier proofs of some known results and also establish new ones.
doi_str_mv 10.1080/00927872.2022.2116029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780617292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780617292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-2c909c34d840744184cffe5c3589ee296ea62b7a92de55641410470f54623a433</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwE5AicU5Yb_yIb6CKl1QJDnC2jOOgVEkc7BTov8dRy5XL7uWbmd0h5JJCQaGCawCFspJYIGAalApAdUQWlJeYM4r8mCxmJp-hU3IW4waAclnhghQvwVn_5UJmfT92bmqHj6z2vWmHmJmhzsw4Bv_T9mZq_RDPyUljuuguDntJ3u7vXleP-fr54Wl1u84tUjHlaBUoW7K6YiAZoxWzTeO4LXmlnEMlnBH4Lo3C2nEuGGUUmISGM4GlYWW5JFd73xT-uXVx0hu_DUOK1OlVEFSiwkTxPWWDjzG4Ro8hXRp2moKeq9F_1ei5Gn2oJulu9rp2aHzozbcPXa0ns-t8aIIZbBt1-b_FL9jCaJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780617292</pqid></control><display><type>article</type><title>Precover completing domains and approximations</title><source>Taylor and Francis Science and Technology Collection</source><creator>Amzil, Houda ; Bennis, Driss ; Rozas, J. R. García ; Oyonarte, Luis</creator><creatorcontrib>Amzil, Houda ; Bennis, Driss ; Rozas, J. R. García ; Oyonarte, Luis</creatorcontrib><description>In this paper, we introduce an -precover completing domain , with being a class of modules and not necessarily a single module, and then investigate when every module in has an -preenvelope. Epic and monic -preenvelopes are also investigated. This study plays a key role in setting a general framework for several classical results. Then, for a class of finitely generated modules , we introduce the notion of -R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler modules. This enabled us to find easier proofs of some known results and also establish new ones.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2022.2116029</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Domains ; Modules ; precover completing domains ; Precovers ; preenvelopes ; R-Mittag-Leffler modules</subject><ispartof>Communications in algebra, 2023-03, Vol.51 (3), p.915-929</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-2c909c34d840744184cffe5c3589ee296ea62b7a92de55641410470f54623a433</cites><orcidid>0000-0002-9563-481X ; 0000-0002-3016-0254 ; 0000-0002-4516-2287 ; 0000-0001-9793-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amzil, Houda</creatorcontrib><creatorcontrib>Bennis, Driss</creatorcontrib><creatorcontrib>Rozas, J. R. García</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><title>Precover completing domains and approximations</title><title>Communications in algebra</title><description>In this paper, we introduce an -precover completing domain , with being a class of modules and not necessarily a single module, and then investigate when every module in has an -preenvelope. Epic and monic -preenvelopes are also investigated. This study plays a key role in setting a general framework for several classical results. Then, for a class of finitely generated modules , we introduce the notion of -R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler modules. This enabled us to find easier proofs of some known results and also establish new ones.</description><subject>Domains</subject><subject>Modules</subject><subject>precover completing domains</subject><subject>Precovers</subject><subject>preenvelopes</subject><subject>R-Mittag-Leffler modules</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwE5AicU5Yb_yIb6CKl1QJDnC2jOOgVEkc7BTov8dRy5XL7uWbmd0h5JJCQaGCawCFspJYIGAalApAdUQWlJeYM4r8mCxmJp-hU3IW4waAclnhghQvwVn_5UJmfT92bmqHj6z2vWmHmJmhzsw4Bv_T9mZq_RDPyUljuuguDntJ3u7vXleP-fr54Wl1u84tUjHlaBUoW7K6YiAZoxWzTeO4LXmlnEMlnBH4Lo3C2nEuGGUUmISGM4GlYWW5JFd73xT-uXVx0hu_DUOK1OlVEFSiwkTxPWWDjzG4Ro8hXRp2moKeq9F_1ei5Gn2oJulu9rp2aHzozbcPXa0ns-t8aIIZbBt1-b_FL9jCaJA</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Amzil, Houda</creator><creator>Bennis, Driss</creator><creator>Rozas, J. R. García</creator><creator>Oyonarte, Luis</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9563-481X</orcidid><orcidid>https://orcid.org/0000-0002-3016-0254</orcidid><orcidid>https://orcid.org/0000-0002-4516-2287</orcidid><orcidid>https://orcid.org/0000-0001-9793-6742</orcidid></search><sort><creationdate>20230304</creationdate><title>Precover completing domains and approximations</title><author>Amzil, Houda ; Bennis, Driss ; Rozas, J. R. García ; Oyonarte, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-2c909c34d840744184cffe5c3589ee296ea62b7a92de55641410470f54623a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Domains</topic><topic>Modules</topic><topic>precover completing domains</topic><topic>Precovers</topic><topic>preenvelopes</topic><topic>R-Mittag-Leffler modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amzil, Houda</creatorcontrib><creatorcontrib>Bennis, Driss</creatorcontrib><creatorcontrib>Rozas, J. R. García</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amzil, Houda</au><au>Bennis, Driss</au><au>Rozas, J. R. García</au><au>Oyonarte, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precover completing domains and approximations</atitle><jtitle>Communications in algebra</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>51</volume><issue>3</issue><spage>915</spage><epage>929</epage><pages>915-929</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>In this paper, we introduce an -precover completing domain , with being a class of modules and not necessarily a single module, and then investigate when every module in has an -preenvelope. Epic and monic -preenvelopes are also investigated. This study plays a key role in setting a general framework for several classical results. Then, for a class of finitely generated modules , we introduce the notion of -R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler modules. This enabled us to find easier proofs of some known results and also establish new ones.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2022.2116029</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9563-481X</orcidid><orcidid>https://orcid.org/0000-0002-3016-0254</orcidid><orcidid>https://orcid.org/0000-0002-4516-2287</orcidid><orcidid>https://orcid.org/0000-0001-9793-6742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2023-03, Vol.51 (3), p.915-929
issn 0092-7872
1532-4125
language eng
recordid cdi_proquest_journals_2780617292
source Taylor and Francis Science and Technology Collection
subjects Domains
Modules
precover completing domains
Precovers
preenvelopes
R-Mittag-Leffler modules
title Precover completing domains and approximations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precover%20completing%20domains%20and%20approximations&rft.jtitle=Communications%20in%20algebra&rft.au=Amzil,%20Houda&rft.date=2023-03-04&rft.volume=51&rft.issue=3&rft.spage=915&rft.epage=929&rft.pages=915-929&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2022.2116029&rft_dat=%3Cproquest_cross%3E2780617292%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-2c909c34d840744184cffe5c3589ee296ea62b7a92de55641410470f54623a433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780617292&rft_id=info:pmid/&rfr_iscdi=true