Loading…

Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field

Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (9), p.e2205053-n/a
Main Authors: Wu, Yizhang, Song, Xueru, Zhou, Xiaoyu, Song, Renjie, Tang, Wenchao, Yang, Dingyi, Wang, Yong, Lv, Zhongyang, Zhong, Wei, Cai, Hong‐Ling, Zhang, Aimei, Wei, Jia, Wu, X. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683
cites cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683
container_end_page n/a
container_issue 9
container_start_page e2205053
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Wu, Yizhang
Song, Xueru
Zhou, Xiaoyu
Song, Renjie
Tang, Wenchao
Yang, Dingyi
Wang, Yong
Lv, Zhongyang
Zhong, Wei
Cai, Hong‐Ling
Zhang, Aimei
Wei, Jia
Wu, X. S.
description Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene. Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.
doi_str_mv 10.1002/smll.202205053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780637898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780637898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</originalsourceid><addsrcrecordid>eNqFkc9OGzEQhy1UVCjtlWNlqecE_9l4d48RhBYpKZUIUm8rrz2bmHrtYHtBy6mPwDvwZn2SbhqaHnua0cw33xx-CJ1SMqaEsLPYWjtmhDEyIRN-gI6poHwkCla-2feUHKF3Md4RwinL8rfoiIsJExnPjtHLNwNP_tfP56lK5kEm0HiafGvUMFqujcMLb_tag-tafGFiZxuj4WzxHRzgr9J5cE99C7jxAV-5BKvwRyGdxrOmMcqAS3jZtcN6uYYgNz1-MBLf2hRk9J3T2zfBrFYQhrMbtfYp_ejxzIJKwSh8acDq9-iwkTbCh9d6gm4vZ8vzL6P59eer8-l8pHjO-ajMS1ZywkieSchlQ7QoCC1A1bJkRFBKWE1r4PVQCiFh2KuiZnpS5nVGRcFP0KeddxP8fQcxVXe-C254WbG8IILnRbmlxjtKBR9jgKbaBNPK0FeUVNtMqm0m1T6T4eDjq7arW9B7_G8IA1DugEdjof-PrrpZzOf_5L8BnpmeCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780637898</pqid></control><display><type>article</type><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</creator><creatorcontrib>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</creatorcontrib><description>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene. Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205053</identifier><identifier>PMID: 36526434</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Apoptosis ; Chitosan ; Deactivation ; Efficiency ; Electric fields ; Heterojunctions ; Humans ; Hydrogen peroxide ; immunotherapy ; Interface stability ; Magnetic resonance imaging ; Metallicity ; Molybdenum ; Molybdenum disulfide ; monolayer MoS 2 ; Monolayers ; MXenes ; Nanotechnology ; Neoplasms - therapy ; Peroxidase ; Photothermal conversion ; Piezoelectricity ; piezo‐assisted sonodynamic therapy ; reactive oxygen species evolution ; Schottky nanoenzymes ; Toxicity ; Tumor Microenvironment ; Tumors ; ultrathin MXene</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205053-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</citedby><cites>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</cites><orcidid>0000-0003-4200-3587 ; 0000-0001-6244-8458 ; 0000-0002-2855-3016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36526434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Song, Xueru</creatorcontrib><creatorcontrib>Zhou, Xiaoyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><creatorcontrib>Tang, Wenchao</creatorcontrib><creatorcontrib>Yang, Dingyi</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lv, Zhongyang</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Cai, Hong‐Ling</creatorcontrib><creatorcontrib>Zhang, Aimei</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wu, X. S.</creatorcontrib><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene. Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</description><subject>Apoptosis</subject><subject>Chitosan</subject><subject>Deactivation</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Heterojunctions</subject><subject>Humans</subject><subject>Hydrogen peroxide</subject><subject>immunotherapy</subject><subject>Interface stability</subject><subject>Magnetic resonance imaging</subject><subject>Metallicity</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>monolayer MoS 2</subject><subject>Monolayers</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Neoplasms - therapy</subject><subject>Peroxidase</subject><subject>Photothermal conversion</subject><subject>Piezoelectricity</subject><subject>piezo‐assisted sonodynamic therapy</subject><subject>reactive oxygen species evolution</subject><subject>Schottky nanoenzymes</subject><subject>Toxicity</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>ultrathin MXene</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQhy1UVCjtlWNlqecE_9l4d48RhBYpKZUIUm8rrz2bmHrtYHtBy6mPwDvwZn2SbhqaHnua0cw33xx-CJ1SMqaEsLPYWjtmhDEyIRN-gI6poHwkCla-2feUHKF3Md4RwinL8rfoiIsJExnPjtHLNwNP_tfP56lK5kEm0HiafGvUMFqujcMLb_tag-tafGFiZxuj4WzxHRzgr9J5cE99C7jxAV-5BKvwRyGdxrOmMcqAS3jZtcN6uYYgNz1-MBLf2hRk9J3T2zfBrFYQhrMbtfYp_ejxzIJKwSh8acDq9-iwkTbCh9d6gm4vZ8vzL6P59eer8-l8pHjO-ajMS1ZywkieSchlQ7QoCC1A1bJkRFBKWE1r4PVQCiFh2KuiZnpS5nVGRcFP0KeddxP8fQcxVXe-C254WbG8IILnRbmlxjtKBR9jgKbaBNPK0FeUVNtMqm0m1T6T4eDjq7arW9B7_G8IA1DugEdjof-PrrpZzOf_5L8BnpmeCA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wu, Yizhang</creator><creator>Song, Xueru</creator><creator>Zhou, Xiaoyu</creator><creator>Song, Renjie</creator><creator>Tang, Wenchao</creator><creator>Yang, Dingyi</creator><creator>Wang, Yong</creator><creator>Lv, Zhongyang</creator><creator>Zhong, Wei</creator><creator>Cai, Hong‐Ling</creator><creator>Zhang, Aimei</creator><creator>Wei, Jia</creator><creator>Wu, X. S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0001-6244-8458</orcidid><orcidid>https://orcid.org/0000-0002-2855-3016</orcidid></search><sort><creationdate>20230301</creationdate><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><author>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Chitosan</topic><topic>Deactivation</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Heterojunctions</topic><topic>Humans</topic><topic>Hydrogen peroxide</topic><topic>immunotherapy</topic><topic>Interface stability</topic><topic>Magnetic resonance imaging</topic><topic>Metallicity</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>monolayer MoS 2</topic><topic>Monolayers</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Neoplasms - therapy</topic><topic>Peroxidase</topic><topic>Photothermal conversion</topic><topic>Piezoelectricity</topic><topic>piezo‐assisted sonodynamic therapy</topic><topic>reactive oxygen species evolution</topic><topic>Schottky nanoenzymes</topic><topic>Toxicity</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>ultrathin MXene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Song, Xueru</creatorcontrib><creatorcontrib>Zhou, Xiaoyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><creatorcontrib>Tang, Wenchao</creatorcontrib><creatorcontrib>Yang, Dingyi</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lv, Zhongyang</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Cai, Hong‐Ling</creatorcontrib><creatorcontrib>Zhang, Aimei</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wu, X. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yizhang</au><au>Song, Xueru</au><au>Zhou, Xiaoyu</au><au>Song, Renjie</au><au>Tang, Wenchao</au><au>Yang, Dingyi</au><au>Wang, Yong</au><au>Lv, Zhongyang</au><au>Zhong, Wei</au><au>Cai, Hong‐Ling</au><au>Zhang, Aimei</au><au>Wei, Jia</au><au>Wu, X. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>e2205053</spage><epage>n/a</epage><pages>e2205053-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene. Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36526434</pmid><doi>10.1002/smll.202205053</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0001-6244-8458</orcidid><orcidid>https://orcid.org/0000-0002-2855-3016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205053-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2780637898
source Wiley-Blackwell Read & Publish Collection
subjects Apoptosis
Chitosan
Deactivation
Efficiency
Electric fields
Heterojunctions
Humans
Hydrogen peroxide
immunotherapy
Interface stability
Magnetic resonance imaging
Metallicity
Molybdenum
Molybdenum disulfide
monolayer MoS 2
Monolayers
MXenes
Nanotechnology
Neoplasms - therapy
Peroxidase
Photothermal conversion
Piezoelectricity
piezo‐assisted sonodynamic therapy
reactive oxygen species evolution
Schottky nanoenzymes
Toxicity
Tumor Microenvironment
Tumors
ultrathin MXene
title Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezo%E2%80%90Activated%20Atomic%E2%80%90Thin%20Molybdenum%20Disulfide/MXene%20Nanoenzyme%20for%20Integrated%20and%20Efficient%20Tumor%20Therapy%20via%20Ultrasound%E2%80%90Triggered%20Schottky%20Electric%20Field&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wu,%20Yizhang&rft.date=2023-03-01&rft.volume=19&rft.issue=9&rft.spage=e2205053&rft.epage=n/a&rft.pages=e2205053-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205053&rft_dat=%3Cproquest_cross%3E2780637898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780637898&rft_id=info:pmid/36526434&rfr_iscdi=true