Loading…
Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field
Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (9), p.e2205053-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683 |
---|---|
cites | cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | e2205053 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Wu, Yizhang Song, Xueru Zhou, Xiaoyu Song, Renjie Tang, Wenchao Yang, Dingyi Wang, Yong Lv, Zhongyang Zhong, Wei Cai, Hong‐Ling Zhang, Aimei Wei, Jia Wu, X. S. |
description | Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene.
Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound. |
doi_str_mv | 10.1002/smll.202205053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780637898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780637898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</originalsourceid><addsrcrecordid>eNqFkc9OGzEQhy1UVCjtlWNlqecE_9l4d48RhBYpKZUIUm8rrz2bmHrtYHtBy6mPwDvwZn2SbhqaHnua0cw33xx-CJ1SMqaEsLPYWjtmhDEyIRN-gI6poHwkCla-2feUHKF3Md4RwinL8rfoiIsJExnPjtHLNwNP_tfP56lK5kEm0HiafGvUMFqujcMLb_tag-tafGFiZxuj4WzxHRzgr9J5cE99C7jxAV-5BKvwRyGdxrOmMcqAS3jZtcN6uYYgNz1-MBLf2hRk9J3T2zfBrFYQhrMbtfYp_ejxzIJKwSh8acDq9-iwkTbCh9d6gm4vZ8vzL6P59eer8-l8pHjO-ajMS1ZywkieSchlQ7QoCC1A1bJkRFBKWE1r4PVQCiFh2KuiZnpS5nVGRcFP0KeddxP8fQcxVXe-C254WbG8IILnRbmlxjtKBR9jgKbaBNPK0FeUVNtMqm0m1T6T4eDjq7arW9B7_G8IA1DugEdjof-PrrpZzOf_5L8BnpmeCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780637898</pqid></control><display><type>article</type><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</creator><creatorcontrib>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</creatorcontrib><description>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene.
Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205053</identifier><identifier>PMID: 36526434</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Apoptosis ; Chitosan ; Deactivation ; Efficiency ; Electric fields ; Heterojunctions ; Humans ; Hydrogen peroxide ; immunotherapy ; Interface stability ; Magnetic resonance imaging ; Metallicity ; Molybdenum ; Molybdenum disulfide ; monolayer MoS 2 ; Monolayers ; MXenes ; Nanotechnology ; Neoplasms - therapy ; Peroxidase ; Photothermal conversion ; Piezoelectricity ; piezo‐assisted sonodynamic therapy ; reactive oxygen species evolution ; Schottky nanoenzymes ; Toxicity ; Tumor Microenvironment ; Tumors ; ultrathin MXene</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205053-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</citedby><cites>FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</cites><orcidid>0000-0003-4200-3587 ; 0000-0001-6244-8458 ; 0000-0002-2855-3016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36526434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Song, Xueru</creatorcontrib><creatorcontrib>Zhou, Xiaoyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><creatorcontrib>Tang, Wenchao</creatorcontrib><creatorcontrib>Yang, Dingyi</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lv, Zhongyang</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Cai, Hong‐Ling</creatorcontrib><creatorcontrib>Zhang, Aimei</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wu, X. S.</creatorcontrib><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene.
Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</description><subject>Apoptosis</subject><subject>Chitosan</subject><subject>Deactivation</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Heterojunctions</subject><subject>Humans</subject><subject>Hydrogen peroxide</subject><subject>immunotherapy</subject><subject>Interface stability</subject><subject>Magnetic resonance imaging</subject><subject>Metallicity</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>monolayer MoS 2</subject><subject>Monolayers</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Neoplasms - therapy</subject><subject>Peroxidase</subject><subject>Photothermal conversion</subject><subject>Piezoelectricity</subject><subject>piezo‐assisted sonodynamic therapy</subject><subject>reactive oxygen species evolution</subject><subject>Schottky nanoenzymes</subject><subject>Toxicity</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>ultrathin MXene</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQhy1UVCjtlWNlqecE_9l4d48RhBYpKZUIUm8rrz2bmHrtYHtBy6mPwDvwZn2SbhqaHnua0cw33xx-CJ1SMqaEsLPYWjtmhDEyIRN-gI6poHwkCla-2feUHKF3Md4RwinL8rfoiIsJExnPjtHLNwNP_tfP56lK5kEm0HiafGvUMFqujcMLb_tag-tafGFiZxuj4WzxHRzgr9J5cE99C7jxAV-5BKvwRyGdxrOmMcqAS3jZtcN6uYYgNz1-MBLf2hRk9J3T2zfBrFYQhrMbtfYp_ejxzIJKwSh8acDq9-iwkTbCh9d6gm4vZ8vzL6P59eer8-l8pHjO-ajMS1ZywkieSchlQ7QoCC1A1bJkRFBKWE1r4PVQCiFh2KuiZnpS5nVGRcFP0KeddxP8fQcxVXe-C254WbG8IILnRbmlxjtKBR9jgKbaBNPK0FeUVNtMqm0m1T6T4eDjq7arW9B7_G8IA1DugEdjof-PrrpZzOf_5L8BnpmeCA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wu, Yizhang</creator><creator>Song, Xueru</creator><creator>Zhou, Xiaoyu</creator><creator>Song, Renjie</creator><creator>Tang, Wenchao</creator><creator>Yang, Dingyi</creator><creator>Wang, Yong</creator><creator>Lv, Zhongyang</creator><creator>Zhong, Wei</creator><creator>Cai, Hong‐Ling</creator><creator>Zhang, Aimei</creator><creator>Wei, Jia</creator><creator>Wu, X. S.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0001-6244-8458</orcidid><orcidid>https://orcid.org/0000-0002-2855-3016</orcidid></search><sort><creationdate>20230301</creationdate><title>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</title><author>Wu, Yizhang ; Song, Xueru ; Zhou, Xiaoyu ; Song, Renjie ; Tang, Wenchao ; Yang, Dingyi ; Wang, Yong ; Lv, Zhongyang ; Zhong, Wei ; Cai, Hong‐Ling ; Zhang, Aimei ; Wei, Jia ; Wu, X. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Chitosan</topic><topic>Deactivation</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Heterojunctions</topic><topic>Humans</topic><topic>Hydrogen peroxide</topic><topic>immunotherapy</topic><topic>Interface stability</topic><topic>Magnetic resonance imaging</topic><topic>Metallicity</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>monolayer MoS 2</topic><topic>Monolayers</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Neoplasms - therapy</topic><topic>Peroxidase</topic><topic>Photothermal conversion</topic><topic>Piezoelectricity</topic><topic>piezo‐assisted sonodynamic therapy</topic><topic>reactive oxygen species evolution</topic><topic>Schottky nanoenzymes</topic><topic>Toxicity</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>ultrathin MXene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Song, Xueru</creatorcontrib><creatorcontrib>Zhou, Xiaoyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><creatorcontrib>Tang, Wenchao</creatorcontrib><creatorcontrib>Yang, Dingyi</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lv, Zhongyang</creatorcontrib><creatorcontrib>Zhong, Wei</creatorcontrib><creatorcontrib>Cai, Hong‐Ling</creatorcontrib><creatorcontrib>Zhang, Aimei</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wu, X. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yizhang</au><au>Song, Xueru</au><au>Zhou, Xiaoyu</au><au>Song, Renjie</au><au>Tang, Wenchao</au><au>Yang, Dingyi</au><au>Wang, Yong</au><au>Lv, Zhongyang</au><au>Zhong, Wei</au><au>Cai, Hong‐Ling</au><au>Zhang, Aimei</au><au>Wei, Jia</au><au>Wu, X. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>e2205053</spage><epage>n/a</epage><pages>e2205053-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Monolayer molybdenum disulfide (MoS2) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS2, quenching of piezo‐generated charges, and monotherapy. Herein, chitosan‐exfoliated monolayer MoS2 (Ch‐MS) is composited with atomic‐thin MXene, Ti3C2 (TC), to self‐assemble a multimodal nanoplatform, Ti3C2‐Chitosan‐MoS2 (TC@Ch‐MS), for tumor inactivation. TC@Ch‐MS not only inherits piezoelectricity from monolayer MoS2, but also maintains remarkable stability. Intrinsic metallic MXene combines with MoS2 to construct an interfacial Schottky heterojunction, facilitating the separation of electron–hole pairs and endowing TC@Ch‐MS increase‐sensitivity magnetic resonance imaging responding. Schottky interface also leads to peroxidase mimetics with excellent catalytic performance toward H2O2 in the tumor microenvironment under mechanical vibration. TC@Ch‐MS possesses the superior photothermal conversion efficiency than pristine TC under near‐infrared ray illumination, attributed to its enhanced interlaminar conductivity. Meanwhile, TC@Ch‐MS realizes optimized efficiency on tumor apoptosis with immunotherapy. Therefore, TC@Ch‐MS achieves an integrated diagnosis and multimodal treatment nanoplatform, whereas the toxicity to normal tissue cells is negligible. This work may shed fresh light on optimizing the piezoelectric materials in biological applications, and also give prominence to the significance of intrinsic metallicity in MXene.
Piezo‐activated Schottky nanoplatform TC@Ch‐MS is developed by self‐assembling between Ti3C2 and chitosan‐exfoliated monolayer MoS2. TC@Ch‐MS harvests superior reactive oxygen species under ultrasonic excitation, owing to the built‐in Schottky electric field; TC@Ch‐MS has superior photo‐thermal conversion efficiency and PTT performance, owing to the conductive layer constructed by interlayered MoS2; TC@Ch‐MS realizes the immunotherapy upon the synergy of NIR and ultrasound.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36526434</pmid><doi>10.1002/smll.202205053</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4200-3587</orcidid><orcidid>https://orcid.org/0000-0001-6244-8458</orcidid><orcidid>https://orcid.org/0000-0002-2855-3016</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205053-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2780637898 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Apoptosis Chitosan Deactivation Efficiency Electric fields Heterojunctions Humans Hydrogen peroxide immunotherapy Interface stability Magnetic resonance imaging Metallicity Molybdenum Molybdenum disulfide monolayer MoS 2 Monolayers MXenes Nanotechnology Neoplasms - therapy Peroxidase Photothermal conversion Piezoelectricity piezo‐assisted sonodynamic therapy reactive oxygen species evolution Schottky nanoenzymes Toxicity Tumor Microenvironment Tumors ultrathin MXene |
title | Piezo‐Activated Atomic‐Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound‐Triggered Schottky Electric Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezo%E2%80%90Activated%20Atomic%E2%80%90Thin%20Molybdenum%20Disulfide/MXene%20Nanoenzyme%20for%20Integrated%20and%20Efficient%20Tumor%20Therapy%20via%20Ultrasound%E2%80%90Triggered%20Schottky%20Electric%20Field&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wu,%20Yizhang&rft.date=2023-03-01&rft.volume=19&rft.issue=9&rft.spage=e2205053&rft.epage=n/a&rft.pages=e2205053-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205053&rft_dat=%3Cproquest_cross%3E2780637898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-97929302074ae7af0d68018ecba92061102b1be3b2b186ae0d6c8b2d597b41683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780637898&rft_id=info:pmid/36526434&rfr_iscdi=true |