Loading…
EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM
To solve radiation problems in time domain directly the modal representation of transient electromagnetic fields is considered. Using evolutionary approach the initial nonstationary three-dimensional electrodynamic problem is transformed into the problem for one-dimensional evolutionary equations by...
Saved in:
Published in: | Electromagnetic waves (Cambridge, Mass.) Mass.), 2010, Vol.103, p.403-418 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913 |
---|---|
cites | cdi_FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913 |
container_end_page | 418 |
container_issue | |
container_start_page | 403 |
container_title | Electromagnetic waves (Cambridge, Mass.) |
container_volume | 103 |
creator | Dumin, Oleksandr M. Dumina, O. O. Katrich, Victor A. |
description | To solve radiation problems in time domain directly the modal representation of transient electromagnetic fields is considered. Using evolutionary approach the initial nonstationary three-dimensional electrodynamic problem is transformed into the problem for one-dimensional evolutionary equations by the construction of the modal basis for electromagnetic fields with arbitrary time dependence in spherical coordinate system. Elimination of the radial components of electrical and magnetic field from Maxwell equation system permits to form the four-dimensional differential operators. It is proved that the operators are self- adjoint ones. The eigen-functions of the operators form the basis. The completeness of the basis is proved by means of Weyl Theorem about orthogonal detachments of Hilbert space. The expansion coefficients of arbitrary electromagnetic field are found from the set of evolutionary equations. The transient electromagnetic field can be found directly without Fourier transform application by means of one-dimensional FDTD method for the medium with dependence on longitudinal coordinate and time or using Laplace transform and wave splitting for the case of homogeneous stationary medium. The above mentioned methods are compared with the three-dimensional FDTD method for the case of the problem of small loop excitation by transient current. |
doi_str_mv | 10.2528/PIER10011909 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780734664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780734664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913</originalsourceid><addsrcrecordid>eNpNUEFLwzAYDaLgmLv5AwJerSZtkybH0mVbIE2kTYWBULo0BYe62W4H__065mHf5b3D473vPQAeMXoJSche36QoMEIYc8RvwAQTwgPGGbm94vdgNgxbNB6JkwjhCfgQ70ZVVhoNzQLaItWlFNpCoURmC5OnSy2szOBCCjUvodSwSOcyVWo98pXJzVJoYaoSaqNLm56N0mINczGXVf4A7rrma_Czf5yCaiFstgqUWcosVYELI3wIwqRjse9iHnFHKPbMbShjaNNEtMPj7yEdO7WU-daTlnQNSzxy2LWcurBpOY6m4Oniu-93v0c_HOrt7tj_jJF1mDCURDGl8ah6vqhcvxuG3nf1vv_8bvq_GqP6PGF9PWF0AoahWxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780734664</pqid></control><display><type>article</type><title>EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM</title><source>Publicly Available Content Database</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Dumin, Oleksandr M. ; Dumina, O. O. ; Katrich, Victor A.</creator><creatorcontrib>Dumin, Oleksandr M. ; Dumina, O. O. ; Katrich, Victor A.</creatorcontrib><description>To solve radiation problems in time domain directly the modal representation of transient electromagnetic fields is considered. Using evolutionary approach the initial nonstationary three-dimensional electrodynamic problem is transformed into the problem for one-dimensional evolutionary equations by the construction of the modal basis for electromagnetic fields with arbitrary time dependence in spherical coordinate system. Elimination of the radial components of electrical and magnetic field from Maxwell equation system permits to form the four-dimensional differential operators. It is proved that the operators are self- adjoint ones. The eigen-functions of the operators form the basis. The completeness of the basis is proved by means of Weyl Theorem about orthogonal detachments of Hilbert space. The expansion coefficients of arbitrary electromagnetic field are found from the set of evolutionary equations. The transient electromagnetic field can be found directly without Fourier transform application by means of one-dimensional FDTD method for the medium with dependence on longitudinal coordinate and time or using Laplace transform and wave splitting for the case of homogeneous stationary medium. The above mentioned methods are compared with the three-dimensional FDTD method for the case of the problem of small loop excitation by transient current.</description><identifier>ISSN: 1559-8985</identifier><identifier>ISSN: 1070-4698</identifier><identifier>EISSN: 1559-8985</identifier><identifier>DOI: 10.2528/PIER10011909</identifier><language>eng</language><publisher>Cambridge: Electromagnetics Academy</publisher><subject>Electromagnetism ; Fourier transforms ; Laplace transforms</subject><ispartof>Electromagnetic waves (Cambridge, Mass.), 2010, Vol.103, p.403-418</ispartof><rights>2010. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jpier.org/about/aims-scope.html</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913</citedby><cites>FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2780734664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dumin, Oleksandr M.</creatorcontrib><creatorcontrib>Dumina, O. O.</creatorcontrib><creatorcontrib>Katrich, Victor A.</creatorcontrib><title>EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM</title><title>Electromagnetic waves (Cambridge, Mass.)</title><description>To solve radiation problems in time domain directly the modal representation of transient electromagnetic fields is considered. Using evolutionary approach the initial nonstationary three-dimensional electrodynamic problem is transformed into the problem for one-dimensional evolutionary equations by the construction of the modal basis for electromagnetic fields with arbitrary time dependence in spherical coordinate system. Elimination of the radial components of electrical and magnetic field from Maxwell equation system permits to form the four-dimensional differential operators. It is proved that the operators are self- adjoint ones. The eigen-functions of the operators form the basis. The completeness of the basis is proved by means of Weyl Theorem about orthogonal detachments of Hilbert space. The expansion coefficients of arbitrary electromagnetic field are found from the set of evolutionary equations. The transient electromagnetic field can be found directly without Fourier transform application by means of one-dimensional FDTD method for the medium with dependence on longitudinal coordinate and time or using Laplace transform and wave splitting for the case of homogeneous stationary medium. The above mentioned methods are compared with the three-dimensional FDTD method for the case of the problem of small loop excitation by transient current.</description><subject>Electromagnetism</subject><subject>Fourier transforms</subject><subject>Laplace transforms</subject><issn>1559-8985</issn><issn>1070-4698</issn><issn>1559-8985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUEFLwzAYDaLgmLv5AwJerSZtkybH0mVbIE2kTYWBULo0BYe62W4H__065mHf5b3D473vPQAeMXoJSche36QoMEIYc8RvwAQTwgPGGbm94vdgNgxbNB6JkwjhCfgQ70ZVVhoNzQLaItWlFNpCoURmC5OnSy2szOBCCjUvodSwSOcyVWo98pXJzVJoYaoSaqNLm56N0mINczGXVf4A7rrma_Czf5yCaiFstgqUWcosVYELI3wIwqRjse9iHnFHKPbMbShjaNNEtMPj7yEdO7WU-daTlnQNSzxy2LWcurBpOY6m4Oniu-93v0c_HOrt7tj_jJF1mDCURDGl8ah6vqhcvxuG3nf1vv_8bvq_GqP6PGF9PWF0AoahWxY</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Dumin, Oleksandr M.</creator><creator>Dumina, O. O.</creator><creator>Katrich, Victor A.</creator><general>Electromagnetics Academy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2010</creationdate><title>EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM</title><author>Dumin, Oleksandr M. ; Dumina, O. O. ; Katrich, Victor A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Electromagnetism</topic><topic>Fourier transforms</topic><topic>Laplace transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumin, Oleksandr M.</creatorcontrib><creatorcontrib>Dumina, O. O.</creatorcontrib><creatorcontrib>Katrich, Victor A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electromagnetic waves (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumin, Oleksandr M.</au><au>Dumina, O. O.</au><au>Katrich, Victor A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM</atitle><jtitle>Electromagnetic waves (Cambridge, Mass.)</jtitle><date>2010</date><risdate>2010</risdate><volume>103</volume><spage>403</spage><epage>418</epage><pages>403-418</pages><issn>1559-8985</issn><issn>1070-4698</issn><eissn>1559-8985</eissn><abstract>To solve radiation problems in time domain directly the modal representation of transient electromagnetic fields is considered. Using evolutionary approach the initial nonstationary three-dimensional electrodynamic problem is transformed into the problem for one-dimensional evolutionary equations by the construction of the modal basis for electromagnetic fields with arbitrary time dependence in spherical coordinate system. Elimination of the radial components of electrical and magnetic field from Maxwell equation system permits to form the four-dimensional differential operators. It is proved that the operators are self- adjoint ones. The eigen-functions of the operators form the basis. The completeness of the basis is proved by means of Weyl Theorem about orthogonal detachments of Hilbert space. The expansion coefficients of arbitrary electromagnetic field are found from the set of evolutionary equations. The transient electromagnetic field can be found directly without Fourier transform application by means of one-dimensional FDTD method for the medium with dependence on longitudinal coordinate and time or using Laplace transform and wave splitting for the case of homogeneous stationary medium. The above mentioned methods are compared with the three-dimensional FDTD method for the case of the problem of small loop excitation by transient current.</abstract><cop>Cambridge</cop><pub>Electromagnetics Academy</pub><doi>10.2528/PIER10011909</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-8985 |
ispartof | Electromagnetic waves (Cambridge, Mass.), 2010, Vol.103, p.403-418 |
issn | 1559-8985 1070-4698 1559-8985 |
language | eng |
recordid | cdi_proquest_journals_2780734664 |
source | Publicly Available Content Database; Free E-Journal (出版社公開部分のみ) |
subjects | Electromagnetism Fourier transforms Laplace transforms |
title | EVOLUTION OF TRANSIENT ELECTROMAGNETIC FIELDS IN RADIALLY INHOMOGENEOUS NONSTATIONARY MEDIUM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVOLUTION%20OF%20TRANSIENT%20ELECTROMAGNETIC%20FIELDS%20IN%20RADIALLY%20INHOMOGENEOUS%20NONSTATIONARY%20MEDIUM&rft.jtitle=Electromagnetic%20waves%20(Cambridge,%20Mass.)&rft.au=Dumin,%20Oleksandr%20M.&rft.date=2010&rft.volume=103&rft.spage=403&rft.epage=418&rft.pages=403-418&rft.issn=1559-8985&rft.eissn=1559-8985&rft_id=info:doi/10.2528/PIER10011909&rft_dat=%3Cproquest_cross%3E2780734664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-27f84ef4939c561e8cb6880ba36f115526190d68ede5d5fa87e0c1cd96c2ad913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780734664&rft_id=info:pmid/&rfr_iscdi=true |