Loading…
Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies
The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological mo...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2023-02, Vol.2023 (2), p.58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803 |
container_end_page | |
container_issue | 2 |
container_start_page | 58 |
container_title | Journal of cosmology and astroparticle physics |
container_volume | 2023 |
creator | Feldbrugge, Job van de Weygaert, Rien |
description | The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized
N
-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological
N
-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton. |
doi_str_mv | 10.1088/1475-7516/2023/02/058 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2780878826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780878826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhYMoOI4-ghAQxE1tLk2bcSfjFQbcqNuQpAlk7DQ1aRFd-RA-oU9iyojOQlz9F845f_IBcIjRKUac57ioWFYxXOYEEZojkiPGt8DkZ7-90e-CvRiXCJGSUj4Bj3MfV07DF6PgMdRyiH2a4pNpTO_bM9j6Nmtca2SA2rexDzINNQxGNu5N9i7t4Of7ByQXyRwNjP1QOxP3wY6VTTQH33UKHq4u7-c32eLu-nZ-vsh0gWifUWt4aRVndYVLqRjRTBbUqPQ2jOqSKqK4tDNWSIvLWYGVLipqEVGqwgXjiE7B0Tq3C_55MLEXSz-ENp0UpOKIV5ynj04BW6t08DEGY0UX3EqGV4GRGBGKEY8Y8YgRoUBEJITJd7L2Od_9Bi-17DZloqttkuI_pP_HfwHwgYAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780878826</pqid></control><display><type>article</type><title>Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies</title><source>Institute of Physics</source><creator>Feldbrugge, Job ; van de Weygaert, Rien</creator><creatorcontrib>Feldbrugge, Job ; van de Weygaert, Rien</creatorcontrib><description>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized
N
-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological
N
-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2023/02/058</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Alkalies ; Astronomical models ; Bones ; Case studies ; Constraint modelling ; cosmic web ; cosmological simulations ; Cosmology ; dark matter simulations ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Evolution ; Field theory ; Fields (mathematics) ; Filaments ; Galactic clusters ; Galaxies ; Gravitational collapse ; Initial conditions ; Large scale structure of the universe ; Many body problem ; Statistical sampling techniques ; Tensors ; Velocity distribution ; Webs</subject><ispartof>Journal of cosmology and astroparticle physics, 2023-02, Vol.2023 (2), p.58</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</citedby><cites>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Feldbrugge, Job</creatorcontrib><creatorcontrib>van de Weygaert, Rien</creatorcontrib><title>Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies</title><title>Journal of cosmology and astroparticle physics</title><addtitle>J. Cosmol. Astropart. Phys</addtitle><description>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized
N
-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological
N
-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</description><subject>Algorithms</subject><subject>Alkalies</subject><subject>Astronomical models</subject><subject>Bones</subject><subject>Case studies</subject><subject>Constraint modelling</subject><subject>cosmic web</subject><subject>cosmological simulations</subject><subject>Cosmology</subject><subject>dark matter simulations</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Evolution</subject><subject>Field theory</subject><subject>Fields (mathematics)</subject><subject>Filaments</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitational collapse</subject><subject>Initial conditions</subject><subject>Large scale structure of the universe</subject><subject>Many body problem</subject><subject>Statistical sampling techniques</subject><subject>Tensors</subject><subject>Velocity distribution</subject><subject>Webs</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhYMoOI4-ghAQxE1tLk2bcSfjFQbcqNuQpAlk7DQ1aRFd-RA-oU9iyojOQlz9F845f_IBcIjRKUac57ioWFYxXOYEEZojkiPGt8DkZ7-90e-CvRiXCJGSUj4Bj3MfV07DF6PgMdRyiH2a4pNpTO_bM9j6Nmtca2SA2rexDzINNQxGNu5N9i7t4Of7ByQXyRwNjP1QOxP3wY6VTTQH33UKHq4u7-c32eLu-nZ-vsh0gWifUWt4aRVndYVLqRjRTBbUqPQ2jOqSKqK4tDNWSIvLWYGVLipqEVGqwgXjiE7B0Tq3C_55MLEXSz-ENp0UpOKIV5ynj04BW6t08DEGY0UX3EqGV4GRGBGKEY8Y8YgRoUBEJITJd7L2Od_9Bi-17DZloqttkuI_pP_HfwHwgYAc</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Feldbrugge, Job</creator><creator>van de Weygaert, Rien</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies</title><author>Feldbrugge, Job ; van de Weygaert, Rien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alkalies</topic><topic>Astronomical models</topic><topic>Bones</topic><topic>Case studies</topic><topic>Constraint modelling</topic><topic>cosmic web</topic><topic>cosmological simulations</topic><topic>Cosmology</topic><topic>dark matter simulations</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Evolution</topic><topic>Field theory</topic><topic>Fields (mathematics)</topic><topic>Filaments</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitational collapse</topic><topic>Initial conditions</topic><topic>Large scale structure of the universe</topic><topic>Many body problem</topic><topic>Statistical sampling techniques</topic><topic>Tensors</topic><topic>Velocity distribution</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldbrugge, Job</creatorcontrib><creatorcontrib>van de Weygaert, Rien</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldbrugge, Job</au><au>van de Weygaert, Rien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><addtitle>J. Cosmol. Astropart. Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>2023</volume><issue>2</issue><spage>58</spage><pages>58-</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized
N
-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological
N
-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2023/02/058</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-7516 |
ispartof | Journal of cosmology and astroparticle physics, 2023-02, Vol.2023 (2), p.58 |
issn | 1475-7516 1475-7516 |
language | eng |
recordid | cdi_proquest_journals_2780878826 |
source | Institute of Physics |
subjects | Algorithms Alkalies Astronomical models Bones Case studies Constraint modelling cosmic web cosmological simulations Cosmology dark matter simulations Dynamical systems Eigenvalues Eigenvectors Evolution Field theory Fields (mathematics) Filaments Galactic clusters Galaxies Gravitational collapse Initial conditions Large scale structure of the universe Many body problem Statistical sampling techniques Tensors Velocity distribution Webs |
title | Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic%20web%20&%20caustic%20skeleton:%20non-linear%20constrained%20realizations%20%E2%80%94%202D%20case%20studies&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Feldbrugge,%20Job&rft.date=2023-02-01&rft.volume=2023&rft.issue=2&rft.spage=58&rft.pages=58-&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2023/02/058&rft_dat=%3Cproquest_iop_j%3E2780878826%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780878826&rft_id=info:pmid/&rfr_iscdi=true |