Loading…

Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies

The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological mo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2023-02, Vol.2023 (2), p.58
Main Authors: Feldbrugge, Job, van de Weygaert, Rien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803
cites cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803
container_end_page
container_issue 2
container_start_page 58
container_title Journal of cosmology and astroparticle physics
container_volume 2023
creator Feldbrugge, Job
van de Weygaert, Rien
description The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N -body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N -body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.
doi_str_mv 10.1088/1475-7516/2023/02/058
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2780878826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780878826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhYMoOI4-ghAQxE1tLk2bcSfjFQbcqNuQpAlk7DQ1aRFd-RA-oU9iyojOQlz9F845f_IBcIjRKUac57ioWFYxXOYEEZojkiPGt8DkZ7-90e-CvRiXCJGSUj4Bj3MfV07DF6PgMdRyiH2a4pNpTO_bM9j6Nmtca2SA2rexDzINNQxGNu5N9i7t4Of7ByQXyRwNjP1QOxP3wY6VTTQH33UKHq4u7-c32eLu-nZ-vsh0gWifUWt4aRVndYVLqRjRTBbUqPQ2jOqSKqK4tDNWSIvLWYGVLipqEVGqwgXjiE7B0Tq3C_55MLEXSz-ENp0UpOKIV5ynj04BW6t08DEGY0UX3EqGV4GRGBGKEY8Y8YgRoUBEJITJd7L2Od_9Bi-17DZloqttkuI_pP_HfwHwgYAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780878826</pqid></control><display><type>article</type><title>Cosmic web &amp; caustic skeleton: non-linear constrained realizations — 2D case studies</title><source>Institute of Physics</source><creator>Feldbrugge, Job ; van de Weygaert, Rien</creator><creatorcontrib>Feldbrugge, Job ; van de Weygaert, Rien</creatorcontrib><description>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N -body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N -body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2023/02/058</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Alkalies ; Astronomical models ; Bones ; Case studies ; Constraint modelling ; cosmic web ; cosmological simulations ; Cosmology ; dark matter simulations ; Dynamical systems ; Eigenvalues ; Eigenvectors ; Evolution ; Field theory ; Fields (mathematics) ; Filaments ; Galactic clusters ; Galaxies ; Gravitational collapse ; Initial conditions ; Large scale structure of the universe ; Many body problem ; Statistical sampling techniques ; Tensors ; Velocity distribution ; Webs</subject><ispartof>Journal of cosmology and astroparticle physics, 2023-02, Vol.2023 (2), p.58</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</citedby><cites>FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Feldbrugge, Job</creatorcontrib><creatorcontrib>van de Weygaert, Rien</creatorcontrib><title>Cosmic web &amp; caustic skeleton: non-linear constrained realizations — 2D case studies</title><title>Journal of cosmology and astroparticle physics</title><addtitle>J. Cosmol. Astropart. Phys</addtitle><description>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N -body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N -body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</description><subject>Algorithms</subject><subject>Alkalies</subject><subject>Astronomical models</subject><subject>Bones</subject><subject>Case studies</subject><subject>Constraint modelling</subject><subject>cosmic web</subject><subject>cosmological simulations</subject><subject>Cosmology</subject><subject>dark matter simulations</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Evolution</subject><subject>Field theory</subject><subject>Fields (mathematics)</subject><subject>Filaments</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitational collapse</subject><subject>Initial conditions</subject><subject>Large scale structure of the universe</subject><subject>Many body problem</subject><subject>Statistical sampling techniques</subject><subject>Tensors</subject><subject>Velocity distribution</subject><subject>Webs</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhYMoOI4-ghAQxE1tLk2bcSfjFQbcqNuQpAlk7DQ1aRFd-RA-oU9iyojOQlz9F845f_IBcIjRKUac57ioWFYxXOYEEZojkiPGt8DkZ7-90e-CvRiXCJGSUj4Bj3MfV07DF6PgMdRyiH2a4pNpTO_bM9j6Nmtca2SA2rexDzINNQxGNu5N9i7t4Of7ByQXyRwNjP1QOxP3wY6VTTQH33UKHq4u7-c32eLu-nZ-vsh0gWifUWt4aRVndYVLqRjRTBbUqPQ2jOqSKqK4tDNWSIvLWYGVLipqEVGqwgXjiE7B0Tq3C_55MLEXSz-ENp0UpOKIV5ynj04BW6t08DEGY0UX3EqGV4GRGBGKEY8Y8YgRoUBEJITJd7L2Od_9Bi-17DZloqttkuI_pP_HfwHwgYAc</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Feldbrugge, Job</creator><creator>van de Weygaert, Rien</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Cosmic web &amp; caustic skeleton: non-linear constrained realizations — 2D case studies</title><author>Feldbrugge, Job ; van de Weygaert, Rien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alkalies</topic><topic>Astronomical models</topic><topic>Bones</topic><topic>Case studies</topic><topic>Constraint modelling</topic><topic>cosmic web</topic><topic>cosmological simulations</topic><topic>Cosmology</topic><topic>dark matter simulations</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Evolution</topic><topic>Field theory</topic><topic>Fields (mathematics)</topic><topic>Filaments</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitational collapse</topic><topic>Initial conditions</topic><topic>Large scale structure of the universe</topic><topic>Many body problem</topic><topic>Statistical sampling techniques</topic><topic>Tensors</topic><topic>Velocity distribution</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldbrugge, Job</creatorcontrib><creatorcontrib>van de Weygaert, Rien</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldbrugge, Job</au><au>van de Weygaert, Rien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic web &amp; caustic skeleton: non-linear constrained realizations — 2D case studies</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><addtitle>J. Cosmol. Astropart. Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>2023</volume><issue>2</issue><spage>58</spage><pages>58-</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N -body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N -body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed non-linear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2023/02/058</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2023-02, Vol.2023 (2), p.58
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2780878826
source Institute of Physics
subjects Algorithms
Alkalies
Astronomical models
Bones
Case studies
Constraint modelling
cosmic web
cosmological simulations
Cosmology
dark matter simulations
Dynamical systems
Eigenvalues
Eigenvectors
Evolution
Field theory
Fields (mathematics)
Filaments
Galactic clusters
Galaxies
Gravitational collapse
Initial conditions
Large scale structure of the universe
Many body problem
Statistical sampling techniques
Tensors
Velocity distribution
Webs
title Cosmic web & caustic skeleton: non-linear constrained realizations — 2D case studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic%20web%20&%20caustic%20skeleton:%20non-linear%20constrained%20realizations%20%E2%80%94%202D%20case%20studies&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Feldbrugge,%20Job&rft.date=2023-02-01&rft.volume=2023&rft.issue=2&rft.spage=58&rft.pages=58-&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2023/02/058&rft_dat=%3Cproquest_iop_j%3E2780878826%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3fe86fb85d716ab52c5a43eb63310d63b2b8af954af16941bc473f02bb7145803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780878826&rft_id=info:pmid/&rfr_iscdi=true