Loading…

Electric field induced negative capacitance in semiconducting polymer

Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-03, Vol.133 (9)
Main Authors: Mandal, Sougata, Menon, Reghu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3
cites cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 133
creator Mandal, Sougata
Menon, Reghu
description Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with I– V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.
doi_str_mv 10.1063/5.0139079
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2780996378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780996378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQ-SRpmuYoY77AwIueQ5o-HRldU5NssG9vRwfePT2H_4_njZB7CgsKJX8WC6BcgVQXZEahUrkUAi7JDIDRvFJSXZObGLcAlFZczchq1aFNwdmsddg1meubvcUm63FjkjtgZs1grEumtziGWcSds_6Ekus32eC74w7DLblqTRfx7lzn5Pt19bV8z9efbx_Ll3VuOZMpb0qByIBJxQpRU8XQsLKosODjdmMkoa6LQtaUtUDLsuaSS2YolaJtytoaPicPU98h-J89xqS3fh_6caRmsgKlSi6rUT1OygYfY8BWD8HtTDhqCvr0JS30-UujfZpsPB2ZnO__hw8-_EE9NC3_BSwhdKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780996378</pqid></control><display><type>article</type><title>Electric field induced negative capacitance in semiconducting polymer</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mandal, Sougata ; Menon, Reghu</creator><creatorcontrib>Mandal, Sougata ; Menon, Reghu</creatorcontrib><description>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with I– V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0139079</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Capacitance bridges ; Carrier density ; Carrier mobility ; Data analysis ; Dielectric loss ; Dipoles ; Electric fields</subject><ispartof>Journal of applied physics, 2023-03, Vol.133 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</citedby><cites>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</cites><orcidid>0000-0003-3441-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Mandal, Sougata</creatorcontrib><creatorcontrib>Menon, Reghu</creatorcontrib><title>Electric field induced negative capacitance in semiconducting polymer</title><title>Journal of applied physics</title><description>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with I– V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</description><subject>Applied physics</subject><subject>Capacitance bridges</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Data analysis</subject><subject>Dielectric loss</subject><subject>Dipoles</subject><subject>Electric fields</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQ-SRpmuYoY77AwIueQ5o-HRldU5NssG9vRwfePT2H_4_njZB7CgsKJX8WC6BcgVQXZEahUrkUAi7JDIDRvFJSXZObGLcAlFZczchq1aFNwdmsddg1meubvcUm63FjkjtgZs1grEumtziGWcSds_6Ekus32eC74w7DLblqTRfx7lzn5Pt19bV8z9efbx_Ll3VuOZMpb0qByIBJxQpRU8XQsLKosODjdmMkoa6LQtaUtUDLsuaSS2YolaJtytoaPicPU98h-J89xqS3fh_6caRmsgKlSi6rUT1OygYfY8BWD8HtTDhqCvr0JS30-UujfZpsPB2ZnO__hw8-_EE9NC3_BSwhdKE</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Mandal, Sougata</creator><creator>Menon, Reghu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3441-2997</orcidid></search><sort><creationdate>20230307</creationdate><title>Electric field induced negative capacitance in semiconducting polymer</title><author>Mandal, Sougata ; Menon, Reghu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Capacitance bridges</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Data analysis</topic><topic>Dielectric loss</topic><topic>Dipoles</topic><topic>Electric fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sougata</creatorcontrib><creatorcontrib>Menon, Reghu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sougata</au><au>Menon, Reghu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field induced negative capacitance in semiconducting polymer</atitle><jtitle>Journal of applied physics</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>133</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with I– V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0139079</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3441-2997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-03, Vol.133 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2780996378
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Capacitance bridges
Carrier density
Carrier mobility
Data analysis
Dielectric loss
Dipoles
Electric fields
title Electric field induced negative capacitance in semiconducting polymer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20induced%20negative%20capacitance%20in%20semiconducting%20polymer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mandal,%20Sougata&rft.date=2023-03-07&rft.volume=133&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0139079&rft_dat=%3Cproquest_scita%3E2780996378%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780996378&rft_id=info:pmid/&rfr_iscdi=true