Loading…
Electric field induced negative capacitance in semiconducting polymer
Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher...
Saved in:
Published in: | Journal of applied physics 2023-03, Vol.133 (9) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Mandal, Sougata Menon, Reghu |
description | Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with
I–
V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample. |
doi_str_mv | 10.1063/5.0139079 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2780996378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780996378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQ-SRpmuYoY77AwIueQ5o-HRldU5NssG9vRwfePT2H_4_njZB7CgsKJX8WC6BcgVQXZEahUrkUAi7JDIDRvFJSXZObGLcAlFZczchq1aFNwdmsddg1meubvcUm63FjkjtgZs1grEumtziGWcSds_6Ekus32eC74w7DLblqTRfx7lzn5Pt19bV8z9efbx_Ll3VuOZMpb0qByIBJxQpRU8XQsLKosODjdmMkoa6LQtaUtUDLsuaSS2YolaJtytoaPicPU98h-J89xqS3fh_6caRmsgKlSi6rUT1OygYfY8BWD8HtTDhqCvr0JS30-UujfZpsPB2ZnO__hw8-_EE9NC3_BSwhdKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780996378</pqid></control><display><type>article</type><title>Electric field induced negative capacitance in semiconducting polymer</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mandal, Sougata ; Menon, Reghu</creator><creatorcontrib>Mandal, Sougata ; Menon, Reghu</creatorcontrib><description>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with
I–
V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0139079</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Capacitance bridges ; Carrier density ; Carrier mobility ; Data analysis ; Dielectric loss ; Dipoles ; Electric fields</subject><ispartof>Journal of applied physics, 2023-03, Vol.133 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</citedby><cites>FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</cites><orcidid>0000-0003-3441-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Mandal, Sougata</creatorcontrib><creatorcontrib>Menon, Reghu</creatorcontrib><title>Electric field induced negative capacitance in semiconducting polymer</title><title>Journal of applied physics</title><description>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with
I–
V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</description><subject>Applied physics</subject><subject>Capacitance bridges</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Data analysis</subject><subject>Dielectric loss</subject><subject>Dipoles</subject><subject>Electric fields</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQ-SRpmuYoY77AwIueQ5o-HRldU5NssG9vRwfePT2H_4_njZB7CgsKJX8WC6BcgVQXZEahUrkUAi7JDIDRvFJSXZObGLcAlFZczchq1aFNwdmsddg1meubvcUm63FjkjtgZs1grEumtziGWcSds_6Ekus32eC74w7DLblqTRfx7lzn5Pt19bV8z9efbx_Ll3VuOZMpb0qByIBJxQpRU8XQsLKosODjdmMkoa6LQtaUtUDLsuaSS2YolaJtytoaPicPU98h-J89xqS3fh_6caRmsgKlSi6rUT1OygYfY8BWD8HtTDhqCvr0JS30-UujfZpsPB2ZnO__hw8-_EE9NC3_BSwhdKE</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Mandal, Sougata</creator><creator>Menon, Reghu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3441-2997</orcidid></search><sort><creationdate>20230307</creationdate><title>Electric field induced negative capacitance in semiconducting polymer</title><author>Mandal, Sougata ; Menon, Reghu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Capacitance bridges</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Data analysis</topic><topic>Dielectric loss</topic><topic>Dipoles</topic><topic>Electric fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sougata</creatorcontrib><creatorcontrib>Menon, Reghu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sougata</au><au>Menon, Reghu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field induced negative capacitance in semiconducting polymer</atitle><jtitle>Journal of applied physics</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>133</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electric field dependent capacitance and dielectric loss in poly(3-hexylthiophene) are measured by precision capacitance bridge. Carrier mobility and density are estimated from fits to current–voltage and capacitance data. The capacitance varies largely at lower frequency, and it decreases at higher electric fields. The negative capacitance at low frequency and high field is due to the negative phase angle between the dipole field and the ac signal. The intrinsic carrier density is calculated from fits to the Mott–Schottky equation, and this is consistent with
I–
V data analysis. At higher frequency, the carriers do not follow the ac signal and their density drops; and the flatband potential increases mainly due to the build-in potentials within ordered and amorphous regions in the sample.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0139079</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3441-2997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-03, Vol.133 (9) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2780996378 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Capacitance bridges Carrier density Carrier mobility Data analysis Dielectric loss Dipoles Electric fields |
title | Electric field induced negative capacitance in semiconducting polymer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20induced%20negative%20capacitance%20in%20semiconducting%20polymer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mandal,%20Sougata&rft.date=2023-03-07&rft.volume=133&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0139079&rft_dat=%3Cproquest_scita%3E2780996378%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-d65ee20279245b192ea2648e430215ee70bb447b12f0166b37372a1175fd6bca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2780996378&rft_id=info:pmid/&rfr_iscdi=true |