Loading…

Lifetime-configurable soft robots via photodegradable silicone elastomer composites

Developing soft robots that can control their own life-cycle and degrade on-demand while maintaining hyper-elasticity is a significant research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimul...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-02
Main Authors: Min-Ha, Oh, Young-Hwan, Kim, Seung-Min, Lee, Hwang, Gyeong-Seok, Kim, Kyung-Sub, Jae-Young, Bae, Ju-Young, Kim, Ju-Yong, Lee, Yu-Chan, Kim, Kim, Sang Yup, Seung-Kyun Kang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Min-Ha, Oh
Young-Hwan, Kim
Seung-Min, Lee
Hwang, Gyeong-Seok
Kim, Kyung-Sub
Jae-Young, Bae
Ju-Young, Kim
Ju-Yong, Lee
Yu-Chan, Kim
Kim, Sang Yup
Seung-Kyun Kang
description Developing soft robots that can control their own life-cycle and degrade on-demand while maintaining hyper-elasticity is a significant research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet (UV) light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate (DPI-HFP) with a silicone resin. Spectroscopic analysis revealed the mechanism of Si-O-Si backbone cleavage using fluoride ion (F-), which was generated from UV exposed DPI-HFP. Furthermore, photo-differential scanning calorimetry (DSC) based thermal analysis indicated increased decomposition kinetics at increased temperatures. Additionally, we demonstrated a robotics application of this composite by fabricating a gaiting robot. The integration of soft electronics, including strain sensors, temperature sensors, and photodetectors, expanded the robotic functionalities. This study provides a simple yet novel strategy for designing lifecycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas where retrieval of robots is impossible, and ensure hardware security with on-demand destructive material platforms.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2781017371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781017371</sourcerecordid><originalsourceid>FETCH-proquest_journals_27810173713</originalsourceid><addsrcrecordid>eNqNi7EOgjAUABsTE4nyD02cSUorlt1oHNx0JwVesaTwsK_4_ZLoBzjdcHcrlkil8qw8SLlhKVEvhJBHLYtCJex-cxaiGyBrcLSum4OpPXBCG3nAGiPxtzN8emLEFrpg2q933i0DcPCGIg4QeIPDhOQi0I6trfEE6Y9btr-cH6drNgV8zUCx6nEO46Iqqctc5FrpXP1XfQDl90Fx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781017371</pqid></control><display><type>article</type><title>Lifetime-configurable soft robots via photodegradable silicone elastomer composites</title><source>Publicly Available Content (ProQuest)</source><creator>Min-Ha, Oh ; Young-Hwan, Kim ; Seung-Min, Lee ; Hwang, Gyeong-Seok ; Kim, Kyung-Sub ; Jae-Young, Bae ; Ju-Young, Kim ; Ju-Yong, Lee ; Yu-Chan, Kim ; Kim, Sang Yup ; Seung-Kyun Kang</creator><creatorcontrib>Min-Ha, Oh ; Young-Hwan, Kim ; Seung-Min, Lee ; Hwang, Gyeong-Seok ; Kim, Kyung-Sub ; Jae-Young, Bae ; Ju-Young, Kim ; Ju-Yong, Lee ; Yu-Chan, Kim ; Kim, Sang Yup ; Seung-Kyun Kang</creatorcontrib><description>Developing soft robots that can control their own life-cycle and degrade on-demand while maintaining hyper-elasticity is a significant research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet (UV) light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate (DPI-HFP) with a silicone resin. Spectroscopic analysis revealed the mechanism of Si-O-Si backbone cleavage using fluoride ion (F-), which was generated from UV exposed DPI-HFP. Furthermore, photo-differential scanning calorimetry (DSC) based thermal analysis indicated increased decomposition kinetics at increased temperatures. Additionally, we demonstrated a robotics application of this composite by fabricating a gaiting robot. The integration of soft electronics, including strain sensors, temperature sensors, and photodetectors, expanded the robotic functionalities. This study provides a simple yet novel strategy for designing lifecycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas where retrieval of robots is impossible, and ensure hardware security with on-demand destructive material platforms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Degradation ; Elastomers ; Fluorides ; Hazardous areas ; Hazardous wastes ; Manufacturing engineering ; Robot control ; Robotics ; Robots ; Silicon ; Silicone resins ; Silicones ; Soft robotics ; Stretchability ; Temperature sensors ; Thermal analysis</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2781017371?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Min-Ha, Oh</creatorcontrib><creatorcontrib>Young-Hwan, Kim</creatorcontrib><creatorcontrib>Seung-Min, Lee</creatorcontrib><creatorcontrib>Hwang, Gyeong-Seok</creatorcontrib><creatorcontrib>Kim, Kyung-Sub</creatorcontrib><creatorcontrib>Jae-Young, Bae</creatorcontrib><creatorcontrib>Ju-Young, Kim</creatorcontrib><creatorcontrib>Ju-Yong, Lee</creatorcontrib><creatorcontrib>Yu-Chan, Kim</creatorcontrib><creatorcontrib>Kim, Sang Yup</creatorcontrib><creatorcontrib>Seung-Kyun Kang</creatorcontrib><title>Lifetime-configurable soft robots via photodegradable silicone elastomer composites</title><title>arXiv.org</title><description>Developing soft robots that can control their own life-cycle and degrade on-demand while maintaining hyper-elasticity is a significant research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet (UV) light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate (DPI-HFP) with a silicone resin. Spectroscopic analysis revealed the mechanism of Si-O-Si backbone cleavage using fluoride ion (F-), which was generated from UV exposed DPI-HFP. Furthermore, photo-differential scanning calorimetry (DSC) based thermal analysis indicated increased decomposition kinetics at increased temperatures. Additionally, we demonstrated a robotics application of this composite by fabricating a gaiting robot. The integration of soft electronics, including strain sensors, temperature sensors, and photodetectors, expanded the robotic functionalities. This study provides a simple yet novel strategy for designing lifecycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas where retrieval of robots is impossible, and ensure hardware security with on-demand destructive material platforms.</description><subject>Automation</subject><subject>Degradation</subject><subject>Elastomers</subject><subject>Fluorides</subject><subject>Hazardous areas</subject><subject>Hazardous wastes</subject><subject>Manufacturing engineering</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Silicon</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Soft robotics</subject><subject>Stretchability</subject><subject>Temperature sensors</subject><subject>Thermal analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EOgjAUABsTE4nyD02cSUorlt1oHNx0JwVesaTwsK_4_ZLoBzjdcHcrlkil8qw8SLlhKVEvhJBHLYtCJex-cxaiGyBrcLSum4OpPXBCG3nAGiPxtzN8emLEFrpg2q933i0DcPCGIg4QeIPDhOQi0I6trfEE6Y9btr-cH6drNgV8zUCx6nEO46Iqqctc5FrpXP1XfQDl90Fx</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Min-Ha, Oh</creator><creator>Young-Hwan, Kim</creator><creator>Seung-Min, Lee</creator><creator>Hwang, Gyeong-Seok</creator><creator>Kim, Kyung-Sub</creator><creator>Jae-Young, Bae</creator><creator>Ju-Young, Kim</creator><creator>Ju-Yong, Lee</creator><creator>Yu-Chan, Kim</creator><creator>Kim, Sang Yup</creator><creator>Seung-Kyun Kang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230228</creationdate><title>Lifetime-configurable soft robots via photodegradable silicone elastomer composites</title><author>Min-Ha, Oh ; Young-Hwan, Kim ; Seung-Min, Lee ; Hwang, Gyeong-Seok ; Kim, Kyung-Sub ; Jae-Young, Bae ; Ju-Young, Kim ; Ju-Yong, Lee ; Yu-Chan, Kim ; Kim, Sang Yup ; Seung-Kyun Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27810173713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Degradation</topic><topic>Elastomers</topic><topic>Fluorides</topic><topic>Hazardous areas</topic><topic>Hazardous wastes</topic><topic>Manufacturing engineering</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Silicon</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Soft robotics</topic><topic>Stretchability</topic><topic>Temperature sensors</topic><topic>Thermal analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Min-Ha, Oh</creatorcontrib><creatorcontrib>Young-Hwan, Kim</creatorcontrib><creatorcontrib>Seung-Min, Lee</creatorcontrib><creatorcontrib>Hwang, Gyeong-Seok</creatorcontrib><creatorcontrib>Kim, Kyung-Sub</creatorcontrib><creatorcontrib>Jae-Young, Bae</creatorcontrib><creatorcontrib>Ju-Young, Kim</creatorcontrib><creatorcontrib>Ju-Yong, Lee</creatorcontrib><creatorcontrib>Yu-Chan, Kim</creatorcontrib><creatorcontrib>Kim, Sang Yup</creatorcontrib><creatorcontrib>Seung-Kyun Kang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min-Ha, Oh</au><au>Young-Hwan, Kim</au><au>Seung-Min, Lee</au><au>Hwang, Gyeong-Seok</au><au>Kim, Kyung-Sub</au><au>Jae-Young, Bae</au><au>Ju-Young, Kim</au><au>Ju-Yong, Lee</au><au>Yu-Chan, Kim</au><au>Kim, Sang Yup</au><au>Seung-Kyun Kang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lifetime-configurable soft robots via photodegradable silicone elastomer composites</atitle><jtitle>arXiv.org</jtitle><date>2023-02-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Developing soft robots that can control their own life-cycle and degrade on-demand while maintaining hyper-elasticity is a significant research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet (UV) light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate (DPI-HFP) with a silicone resin. Spectroscopic analysis revealed the mechanism of Si-O-Si backbone cleavage using fluoride ion (F-), which was generated from UV exposed DPI-HFP. Furthermore, photo-differential scanning calorimetry (DSC) based thermal analysis indicated increased decomposition kinetics at increased temperatures. Additionally, we demonstrated a robotics application of this composite by fabricating a gaiting robot. The integration of soft electronics, including strain sensors, temperature sensors, and photodetectors, expanded the robotic functionalities. This study provides a simple yet novel strategy for designing lifecycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas where retrieval of robots is impossible, and ensure hardware security with on-demand destructive material platforms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2781017371
source Publicly Available Content (ProQuest)
subjects Automation
Degradation
Elastomers
Fluorides
Hazardous areas
Hazardous wastes
Manufacturing engineering
Robot control
Robotics
Robots
Silicon
Silicone resins
Silicones
Soft robotics
Stretchability
Temperature sensors
Thermal analysis
title Lifetime-configurable soft robots via photodegradable silicone elastomer composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lifetime-configurable%20soft%20robots%20via%20photodegradable%20silicone%20elastomer%20composites&rft.jtitle=arXiv.org&rft.au=Min-Ha,%20Oh&rft.date=2023-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2781017371%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27810173713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781017371&rft_id=info:pmid/&rfr_iscdi=true