Loading…
TabGenie: A Toolkit for Table-to-Text Generation
Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie - a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generati...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kasner, Zdeněk Garanina, Ekaterina Plátek, Ondřej Dušek, Ondřej |
description | Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie - a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all the inputs are represented as tables with associated metadata. The tables can be explored through the web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie. |
doi_str_mv | 10.48550/arxiv.2302.14169 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2781019826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781019826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-e62b8b0006fa775708e6026b3090e3a4b46bb593dd535b262ba4d2190f01340b3</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMgWGofwF2g64w39-bXXSlahYKb7EvCZGDaYaIzU-njG9DVBx-Hcxh7ktAopzU8x-nW_zRIgI1U0vg7tkIiKZxCfGCbeT4DABqLWtOKQYjpkMc-v_AdD6UMl37hXZl4_YcsliJCvi28InmKS1_GR3bfxWHOm_9ds_D2Gvbv4vh5-NjvjiJ67UU2mFyqIdNFa7UFl02NJgIPmaJKyqSkPbWtJp2w0lG1KD10IElBojXb_mm_pvJ9zfNyOpfrNNbiCa2TIL1DQ78d1ELL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781019826</pqid></control><display><type>article</type><title>TabGenie: A Toolkit for Table-to-Text Generation</title><source>Publicly Available Content Database</source><creator>Kasner, Zdeněk ; Garanina, Ekaterina ; Plátek, Ondřej ; Dušek, Ondřej</creator><creatorcontrib>Kasner, Zdeněk ; Garanina, Ekaterina ; Plátek, Ondřej ; Dušek, Ondřej</creatorcontrib><description>Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie - a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all the inputs are represented as tables with associated metadata. The tables can be explored through the web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2302.14169</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Source code ; Toolkits</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2781019826?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kasner, Zdeněk</creatorcontrib><creatorcontrib>Garanina, Ekaterina</creatorcontrib><creatorcontrib>Plátek, Ondřej</creatorcontrib><creatorcontrib>Dušek, Ondřej</creatorcontrib><title>TabGenie: A Toolkit for Table-to-Text Generation</title><title>arXiv.org</title><description>Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie - a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all the inputs are represented as tables with associated metadata. The tables can be explored through the web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.</description><subject>Datasets</subject><subject>Source code</subject><subject>Toolkits</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEURoMgWGofwF2g64w39-bXXSlahYKb7EvCZGDaYaIzU-njG9DVBx-Hcxh7ktAopzU8x-nW_zRIgI1U0vg7tkIiKZxCfGCbeT4DABqLWtOKQYjpkMc-v_AdD6UMl37hXZl4_YcsliJCvi28InmKS1_GR3bfxWHOm_9ds_D2Gvbv4vh5-NjvjiJ67UU2mFyqIdNFa7UFl02NJgIPmaJKyqSkPbWtJp2w0lG1KD10IElBojXb_mm_pvJ9zfNyOpfrNNbiCa2TIL1DQ78d1ELL</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Kasner, Zdeněk</creator><creator>Garanina, Ekaterina</creator><creator>Plátek, Ondřej</creator><creator>Dušek, Ondřej</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230227</creationdate><title>TabGenie: A Toolkit for Table-to-Text Generation</title><author>Kasner, Zdeněk ; Garanina, Ekaterina ; Plátek, Ondřej ; Dušek, Ondřej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-e62b8b0006fa775708e6026b3090e3a4b46bb593dd535b262ba4d2190f01340b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Source code</topic><topic>Toolkits</topic><toplevel>online_resources</toplevel><creatorcontrib>Kasner, Zdeněk</creatorcontrib><creatorcontrib>Garanina, Ekaterina</creatorcontrib><creatorcontrib>Plátek, Ondřej</creatorcontrib><creatorcontrib>Dušek, Ondřej</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasner, Zdeněk</au><au>Garanina, Ekaterina</au><au>Plátek, Ondřej</au><au>Dušek, Ondřej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TabGenie: A Toolkit for Table-to-Text Generation</atitle><jtitle>arXiv.org</jtitle><date>2023-02-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie - a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all the inputs are represented as tables with associated metadata. The tables can be explored through the web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2302.14169</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2781019826 |
source | Publicly Available Content Database |
subjects | Datasets Source code Toolkits |
title | TabGenie: A Toolkit for Table-to-Text Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TabGenie:%20A%20Toolkit%20for%20Table-to-Text%20Generation&rft.jtitle=arXiv.org&rft.au=Kasner,%20Zden%C4%9Bk&rft.date=2023-02-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2302.14169&rft_dat=%3Cproquest%3E2781019826%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-e62b8b0006fa775708e6026b3090e3a4b46bb593dd535b262ba4d2190f01340b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781019826&rft_id=info:pmid/&rfr_iscdi=true |