Loading…
A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix
This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of paramet...
Saved in:
Published in: | Structural equation modeling 2023-03, Vol.30 (2), p.214-221 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213 |
container_end_page | 221 |
container_issue | 2 |
container_start_page | 214 |
container_title | Structural equation modeling |
container_volume | 30 |
creator | Kreiberg, David Zhou, Xingwu |
description | This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping. |
doi_str_mv | 10.1080/10705511.2022.2076093 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2781398313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781398313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</originalsourceid><addsrcrecordid>eNp9kV9LHDEUxQexULX9CIWArx17bzLJZN666K4WXFqo1seQzSRrZHcyTTLofnuzrPaxL_cP_O7hcE9VfUG4QJDwDaEFzhEvKFBaSiugY0fVCXJGawnQHpe5MPUe-lidpvQEgBKpPKncjCx0yjaSXzEY20_REhcimafstzr7YU1-z5eJzMZxs9tvSz_47bQlVz5lPRj7ToaYyIPPj0SThX-xPXmwfv2YyVLn6F8-VR-c3iT7-a2fVfeL-d3lTX378_rH5ey2NqyFXAuKtJEtCNF3rm-Z6FemWwGX0GGzMtAYzoHKTpimF9YY54SmFFE6g7ylyM6qrwfd9GzHaaXGWLzFnQraqyv_Z6ZCXKtpUo0UnMuCnx_wMYa_k01ZPYUpDsWhoq1E1kmGrFD8QJkYUorW_ZNFUPsE1HsCap-Aekug3H0_3PmhvHSrn0Pc9Crr3SZEF8vzfFLs_xKvtpaLrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781398313</pqid></control><display><type>article</type><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><creator>Kreiberg, David ; Zhou, Xingwu</creator><creatorcontrib>Kreiberg, David ; Zhou, Xingwu</creatorcontrib><description>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</description><identifier>ISSN: 1070-5511</identifier><identifier>ISSN: 1532-8007</identifier><identifier>EISSN: 1532-8007</identifier><identifier>DOI: 10.1080/10705511.2022.2076093</identifier><language>eng</language><publisher>Hove: Routledge</publisher><subject>Minimum distance estimation ; numerical efficiency ; quadratic form fit function ; Statistics ; Statistik ; Structural equation modeling ; structural equation models</subject><ispartof>Structural equation modeling, 2023-03, Vol.30 (2), p.214-221</ispartof><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022</rights><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486558$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreiberg, David</creatorcontrib><creatorcontrib>Zhou, Xingwu</creatorcontrib><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><title>Structural equation modeling</title><description>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</description><subject>Minimum distance estimation</subject><subject>numerical efficiency</subject><subject>quadratic form fit function</subject><subject>Statistics</subject><subject>Statistik</subject><subject>Structural equation modeling</subject><subject>structural equation models</subject><issn>1070-5511</issn><issn>1532-8007</issn><issn>1532-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kV9LHDEUxQexULX9CIWArx17bzLJZN666K4WXFqo1seQzSRrZHcyTTLofnuzrPaxL_cP_O7hcE9VfUG4QJDwDaEFzhEvKFBaSiugY0fVCXJGawnQHpe5MPUe-lidpvQEgBKpPKncjCx0yjaSXzEY20_REhcimafstzr7YU1-z5eJzMZxs9tvSz_47bQlVz5lPRj7ToaYyIPPj0SThX-xPXmwfv2YyVLn6F8-VR-c3iT7-a2fVfeL-d3lTX378_rH5ey2NqyFXAuKtJEtCNF3rm-Z6FemWwGX0GGzMtAYzoHKTpimF9YY54SmFFE6g7ylyM6qrwfd9GzHaaXGWLzFnQraqyv_Z6ZCXKtpUo0UnMuCnx_wMYa_k01ZPYUpDsWhoq1E1kmGrFD8QJkYUorW_ZNFUPsE1HsCap-Aekug3H0_3PmhvHSrn0Pc9Crr3SZEF8vzfFLs_xKvtpaLrA</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Kreiberg, David</creator><creator>Zhou, Xingwu</creator><general>Routledge</general><general>Psychology Press</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope></search><sort><creationdate>20230304</creationdate><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><author>Kreiberg, David ; Zhou, Xingwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Minimum distance estimation</topic><topic>numerical efficiency</topic><topic>quadratic form fit function</topic><topic>Statistics</topic><topic>Statistik</topic><topic>Structural equation modeling</topic><topic>structural equation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreiberg, David</creatorcontrib><creatorcontrib>Zhou, Xingwu</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Structural equation modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreiberg, David</au><au>Zhou, Xingwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</atitle><jtitle>Structural equation modeling</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>214</spage><epage>221</epage><pages>214-221</pages><issn>1070-5511</issn><issn>1532-8007</issn><eissn>1532-8007</eissn><abstract>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</abstract><cop>Hove</cop><pub>Routledge</pub><doi>10.1080/10705511.2022.2076093</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5511 |
ispartof | Structural equation modeling, 2023-03, Vol.30 (2), p.214-221 |
issn | 1070-5511 1532-8007 1532-8007 |
language | eng |
recordid | cdi_proquest_journals_2781398313 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list) |
subjects | Minimum distance estimation numerical efficiency quadratic form fit function Statistics Statistik Structural equation modeling structural equation models |
title | A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T10%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Faster%20Procedure%20for%20Estimating%20SEMs%20Applying%20Minimum%20Distance%20Estimators%20With%20a%20Fixed%20Weight%20Matrix&rft.jtitle=Structural%20equation%20modeling&rft.au=Kreiberg,%20David&rft.date=2023-03-04&rft.volume=30&rft.issue=2&rft.spage=214&rft.epage=221&rft.pages=214-221&rft.issn=1070-5511&rft.eissn=1532-8007&rft_id=info:doi/10.1080/10705511.2022.2076093&rft_dat=%3Cproquest_infor%3E2781398313%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781398313&rft_id=info:pmid/&rfr_iscdi=true |