Loading…

A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix

This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of paramet...

Full description

Saved in:
Bibliographic Details
Published in:Structural equation modeling 2023-03, Vol.30 (2), p.214-221
Main Authors: Kreiberg, David, Zhou, Xingwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213
container_end_page 221
container_issue 2
container_start_page 214
container_title Structural equation modeling
container_volume 30
creator Kreiberg, David
Zhou, Xingwu
description This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.
doi_str_mv 10.1080/10705511.2022.2076093
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2781398313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781398313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</originalsourceid><addsrcrecordid>eNp9kV9LHDEUxQexULX9CIWArx17bzLJZN666K4WXFqo1seQzSRrZHcyTTLofnuzrPaxL_cP_O7hcE9VfUG4QJDwDaEFzhEvKFBaSiugY0fVCXJGawnQHpe5MPUe-lidpvQEgBKpPKncjCx0yjaSXzEY20_REhcimafstzr7YU1-z5eJzMZxs9tvSz_47bQlVz5lPRj7ToaYyIPPj0SThX-xPXmwfv2YyVLn6F8-VR-c3iT7-a2fVfeL-d3lTX378_rH5ey2NqyFXAuKtJEtCNF3rm-Z6FemWwGX0GGzMtAYzoHKTpimF9YY54SmFFE6g7ylyM6qrwfd9GzHaaXGWLzFnQraqyv_Z6ZCXKtpUo0UnMuCnx_wMYa_k01ZPYUpDsWhoq1E1kmGrFD8QJkYUorW_ZNFUPsE1HsCap-Aekug3H0_3PmhvHSrn0Pc9Crr3SZEF8vzfFLs_xKvtpaLrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781398313</pqid></control><display><type>article</type><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><creator>Kreiberg, David ; Zhou, Xingwu</creator><creatorcontrib>Kreiberg, David ; Zhou, Xingwu</creatorcontrib><description>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</description><identifier>ISSN: 1070-5511</identifier><identifier>ISSN: 1532-8007</identifier><identifier>EISSN: 1532-8007</identifier><identifier>DOI: 10.1080/10705511.2022.2076093</identifier><language>eng</language><publisher>Hove: Routledge</publisher><subject>Minimum distance estimation ; numerical efficiency ; quadratic form fit function ; Statistics ; Statistik ; Structural equation modeling ; structural equation models</subject><ispartof>Structural equation modeling, 2023-03, Vol.30 (2), p.214-221</ispartof><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-486558$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreiberg, David</creatorcontrib><creatorcontrib>Zhou, Xingwu</creatorcontrib><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><title>Structural equation modeling</title><description>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</description><subject>Minimum distance estimation</subject><subject>numerical efficiency</subject><subject>quadratic form fit function</subject><subject>Statistics</subject><subject>Statistik</subject><subject>Structural equation modeling</subject><subject>structural equation models</subject><issn>1070-5511</issn><issn>1532-8007</issn><issn>1532-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kV9LHDEUxQexULX9CIWArx17bzLJZN666K4WXFqo1seQzSRrZHcyTTLofnuzrPaxL_cP_O7hcE9VfUG4QJDwDaEFzhEvKFBaSiugY0fVCXJGawnQHpe5MPUe-lidpvQEgBKpPKncjCx0yjaSXzEY20_REhcimafstzr7YU1-z5eJzMZxs9tvSz_47bQlVz5lPRj7ToaYyIPPj0SThX-xPXmwfv2YyVLn6F8-VR-c3iT7-a2fVfeL-d3lTX378_rH5ey2NqyFXAuKtJEtCNF3rm-Z6FemWwGX0GGzMtAYzoHKTpimF9YY54SmFFE6g7ylyM6qrwfd9GzHaaXGWLzFnQraqyv_Z6ZCXKtpUo0UnMuCnx_wMYa_k01ZPYUpDsWhoq1E1kmGrFD8QJkYUorW_ZNFUPsE1HsCap-Aekug3H0_3PmhvHSrn0Pc9Crr3SZEF8vzfFLs_xKvtpaLrA</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Kreiberg, David</creator><creator>Zhou, Xingwu</creator><general>Routledge</general><general>Psychology Press</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope></search><sort><creationdate>20230304</creationdate><title>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</title><author>Kreiberg, David ; Zhou, Xingwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Minimum distance estimation</topic><topic>numerical efficiency</topic><topic>quadratic form fit function</topic><topic>Statistics</topic><topic>Statistik</topic><topic>Structural equation modeling</topic><topic>structural equation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreiberg, David</creatorcontrib><creatorcontrib>Zhou, Xingwu</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Structural equation modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreiberg, David</au><au>Zhou, Xingwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix</atitle><jtitle>Structural equation modeling</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>214</spage><epage>221</epage><pages>214-221</pages><issn>1070-5511</issn><issn>1532-8007</issn><eissn>1532-8007</eissn><abstract>This study presents a separable nonlinear least squares (SNLLS) implementation of the minimum distance (MD) estimator employing a fixed-weight matrix for estimating structural equation models (SEMs). In contrast to the standard implementation of the MD estimator, in which the complete set of parameters is estimated using nonlinear optimization, the SNLLS implementation allows a subset of parameters to be estimated using (linear) least squares (LS). The SNLLS implementation possesses a number of benefits, such as faster convergence, better performance in ill-conditioned estimation problems, and fewer required starting values. The present work demonstrates that SNLLS, when applied to SEM estimation problems, significantly reduces the estimation time. Reduced estimation time makes SNLLS particularly useful in applications involving some form of resampling, such as simulation and bootstrapping.</abstract><cop>Hove</cop><pub>Routledge</pub><doi>10.1080/10705511.2022.2076093</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5511
ispartof Structural equation modeling, 2023-03, Vol.30 (2), p.214-221
issn 1070-5511
1532-8007
1532-8007
language eng
recordid cdi_proquest_journals_2781398313
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)
subjects Minimum distance estimation
numerical efficiency
quadratic form fit function
Statistics
Statistik
Structural equation modeling
structural equation models
title A Faster Procedure for Estimating SEMs Applying Minimum Distance Estimators With a Fixed Weight Matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T10%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Faster%20Procedure%20for%20Estimating%20SEMs%20Applying%20Minimum%20Distance%20Estimators%20With%20a%20Fixed%20Weight%20Matrix&rft.jtitle=Structural%20equation%20modeling&rft.au=Kreiberg,%20David&rft.date=2023-03-04&rft.volume=30&rft.issue=2&rft.spage=214&rft.epage=221&rft.pages=214-221&rft.issn=1070-5511&rft.eissn=1532-8007&rft_id=info:doi/10.1080/10705511.2022.2076093&rft_dat=%3Cproquest_infor%3E2781398313%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-6212487066d9fd736dbc9b0580914bc04c5502896c4d6eccff6a22118fc157213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781398313&rft_id=info:pmid/&rfr_iscdi=true