Loading…
Tuning of the Spectral Characteristics of Terahertz Quantum-Cascade Lasers
Terahertz quantum-cascade lasers (THz QCLs) are promising radiation sources for high-resolution gas spectroscopy. A wide operating-frequency band (from 1.2 to 5.4 THz), a narrow generation line (up to 10 kHz), the ability to operate on several radiative transitions (two-color lasers, generation of f...
Saved in:
Published in: | Nanobiotechnology Reports (Online) 2022-12, Vol.17 (Suppl 1), p.S35-S40 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Terahertz quantum-cascade lasers (THz QCLs) are promising radiation sources for high-resolution gas spectroscopy. A wide operating-frequency band (from 1.2 to 5.4 THz), a narrow generation line (up to 10 kHz), the ability to operate on several radiative transitions (two-color lasers, generation of frequency combs) and other unique characteristics of THz QCLs make it possible to create gas spectrometers of a new generation for biomedical and environmental applications. In this paper, we consider the possibility of controlling the spectral characteristics of THz QCLs by changing the operating temperature and injection-current pulse parameters: amplitude, duration, and repetition rate. The energy transfer between longitudinal Fabry–Perot modes in THz QCLs is studied for the first time with a change in the duty cycle of the injection-current pulse cycle. |
---|---|
ISSN: | 2635-1676 1995-0780 2635-1684 1995-0799 |
DOI: | 10.1134/S2635167622070102 |