Loading…

A transient fault data management algorithm for low-voltage station based on overall situation power big data

In view of the problem that the transient fault data in low-voltage area is easily affected by objective noise because of the large number of redundant mapping values and external interference, this paper proposes an algorithm for transient fault data management in low-voltage area based on overall...

Full description

Saved in:
Bibliographic Details
Published in:Applied nanoscience 2023-03, Vol.13 (3), p.2463-2471
Main Authors: Zheng, Sida, Cheng, Jie, Xiong, Hongzhang, Wang, Yanjin, Wang, Yuning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-91516ea5e4ad512ebbe951cda53b7e6f2a02a014ad4e2966e3e22a43f3cc32223
container_end_page 2471
container_issue 3
container_start_page 2463
container_title Applied nanoscience
container_volume 13
creator Zheng, Sida
Cheng, Jie
Xiong, Hongzhang
Wang, Yanjin
Wang, Yuning
description In view of the problem that the transient fault data in low-voltage area is easily affected by objective noise because of the large number of redundant mapping values and external interference, this paper proposes an algorithm for transient fault data management in low-voltage area based on overall situation power big data. This paper divides the global large data of transient fault in low-voltage station into line loss data and other data, and applies the big data mining algorithm to analyze the abnormal situation of voltage, current and instrument, to standardize the transient fault data in low-voltage station and filter the adaptive optimization, to ensure the attribute function dependence and reference constraint goal of data aggregation and to complete the transient fault data management in low-voltage station. The test results show that, the range of the value mapping is always between 0 and 1, which significantly alleviates the influence degree of low-voltage transient fault data affected by noise, improves the data access speed, and ensures the effectiveness of low-voltage transient fault detection.
doi_str_mv 10.1007/s13204-022-02347-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2782225247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782225247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-91516ea5e4ad512ebbe951cda53b7e6f2a02a014ad4e2966e3e22a43f3cc32223</originalsourceid><addsrcrecordid>eNp9UF1LwzAULaLgmPsDPgV8riY3TWMfx_ALBr7oc7htb2tH28wk2_Dfm62ib15yySHnI3CS5FrwW8G5vvNCAs9SDhBXZjqVZ8kMRMFTpYQ-_8W8uEwW3m94HJXpXKpZMixZcDj6jsbAGtz1gdUYkA04YkvD8RX71roufAyssY719pDubR8iy3zA0NmRleipZhHYPTnse-a7sJuorT2QY2XXnmKvkosGe0-Ln3uevD8-vK2e0_Xr08tquU4r0DykhVAiJ1SUYa0EUFlSoURVo5KlprwB5PGIyGYERZ6TJADMZCOrSgKAnCc3U-7W2c8d-WA2dufG-KUBfR8VCjIdVTCpKme9d9SYresGdF9GcHNs1kzNmtisOTVrZDTJyeSjeGzJ_UX_4_oGbHB8sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782225247</pqid></control><display><type>article</type><title>A transient fault data management algorithm for low-voltage station based on overall situation power big data</title><source>Springer Link</source><creator>Zheng, Sida ; Cheng, Jie ; Xiong, Hongzhang ; Wang, Yanjin ; Wang, Yuning</creator><creatorcontrib>Zheng, Sida ; Cheng, Jie ; Xiong, Hongzhang ; Wang, Yanjin ; Wang, Yuning</creatorcontrib><description>In view of the problem that the transient fault data in low-voltage area is easily affected by objective noise because of the large number of redundant mapping values and external interference, this paper proposes an algorithm for transient fault data management in low-voltage area based on overall situation power big data. This paper divides the global large data of transient fault in low-voltage station into line loss data and other data, and applies the big data mining algorithm to analyze the abnormal situation of voltage, current and instrument, to standardize the transient fault data in low-voltage station and filter the adaptive optimization, to ensure the attribute function dependence and reference constraint goal of data aggregation and to complete the transient fault data management in low-voltage station. The test results show that, the range of the value mapping is always between 0 and 1, which significantly alleviates the influence degree of low-voltage transient fault data affected by noise, improves the data access speed, and ensures the effectiveness of low-voltage transient fault detection.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-022-02347-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Big Data ; Chemistry and Materials Science ; Data management ; Data mining ; Electrical surges ; Fault detection ; Mapping ; Materials Science ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Optimization ; Original Article</subject><ispartof>Applied nanoscience, 2023-03, Vol.13 (3), p.2463-2471</ispartof><rights>King Abdulaziz City for Science and Technology 2022</rights><rights>King Abdulaziz City for Science and Technology 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-91516ea5e4ad512ebbe951cda53b7e6f2a02a014ad4e2966e3e22a43f3cc32223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Sida</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Xiong, Hongzhang</creatorcontrib><creatorcontrib>Wang, Yanjin</creatorcontrib><creatorcontrib>Wang, Yuning</creatorcontrib><title>A transient fault data management algorithm for low-voltage station based on overall situation power big data</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>In view of the problem that the transient fault data in low-voltage area is easily affected by objective noise because of the large number of redundant mapping values and external interference, this paper proposes an algorithm for transient fault data management in low-voltage area based on overall situation power big data. This paper divides the global large data of transient fault in low-voltage station into line loss data and other data, and applies the big data mining algorithm to analyze the abnormal situation of voltage, current and instrument, to standardize the transient fault data in low-voltage station and filter the adaptive optimization, to ensure the attribute function dependence and reference constraint goal of data aggregation and to complete the transient fault data management in low-voltage station. The test results show that, the range of the value mapping is always between 0 and 1, which significantly alleviates the influence degree of low-voltage transient fault data affected by noise, improves the data access speed, and ensures the effectiveness of low-voltage transient fault detection.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Chemistry and Materials Science</subject><subject>Data management</subject><subject>Data mining</subject><subject>Electrical surges</subject><subject>Fault detection</subject><subject>Mapping</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optimization</subject><subject>Original Article</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UF1LwzAULaLgmPsDPgV8riY3TWMfx_ALBr7oc7htb2tH28wk2_Dfm62ib15yySHnI3CS5FrwW8G5vvNCAs9SDhBXZjqVZ8kMRMFTpYQ-_8W8uEwW3m94HJXpXKpZMixZcDj6jsbAGtz1gdUYkA04YkvD8RX71roufAyssY719pDubR8iy3zA0NmRleipZhHYPTnse-a7sJuorT2QY2XXnmKvkosGe0-Ln3uevD8-vK2e0_Xr08tquU4r0DykhVAiJ1SUYa0EUFlSoURVo5KlprwB5PGIyGYERZ6TJADMZCOrSgKAnCc3U-7W2c8d-WA2dufG-KUBfR8VCjIdVTCpKme9d9SYresGdF9GcHNs1kzNmtisOTVrZDTJyeSjeGzJ_UX_4_oGbHB8sA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zheng, Sida</creator><creator>Cheng, Jie</creator><creator>Xiong, Hongzhang</creator><creator>Wang, Yanjin</creator><creator>Wang, Yuning</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>A transient fault data management algorithm for low-voltage station based on overall situation power big data</title><author>Zheng, Sida ; Cheng, Jie ; Xiong, Hongzhang ; Wang, Yanjin ; Wang, Yuning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-91516ea5e4ad512ebbe951cda53b7e6f2a02a014ad4e2966e3e22a43f3cc32223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Chemistry and Materials Science</topic><topic>Data management</topic><topic>Data mining</topic><topic>Electrical surges</topic><topic>Fault detection</topic><topic>Mapping</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optimization</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Sida</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Xiong, Hongzhang</creatorcontrib><creatorcontrib>Wang, Yanjin</creatorcontrib><creatorcontrib>Wang, Yuning</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Sida</au><au>Cheng, Jie</au><au>Xiong, Hongzhang</au><au>Wang, Yanjin</au><au>Wang, Yuning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transient fault data management algorithm for low-voltage station based on overall situation power big data</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>2463</spage><epage>2471</epage><pages>2463-2471</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>In view of the problem that the transient fault data in low-voltage area is easily affected by objective noise because of the large number of redundant mapping values and external interference, this paper proposes an algorithm for transient fault data management in low-voltage area based on overall situation power big data. This paper divides the global large data of transient fault in low-voltage station into line loss data and other data, and applies the big data mining algorithm to analyze the abnormal situation of voltage, current and instrument, to standardize the transient fault data in low-voltage station and filter the adaptive optimization, to ensure the attribute function dependence and reference constraint goal of data aggregation and to complete the transient fault data management in low-voltage station. The test results show that, the range of the value mapping is always between 0 and 1, which significantly alleviates the influence degree of low-voltage transient fault data affected by noise, improves the data access speed, and ensures the effectiveness of low-voltage transient fault detection.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-022-02347-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2023-03, Vol.13 (3), p.2463-2471
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2782225247
source Springer Link
subjects Algorithms
Big Data
Chemistry and Materials Science
Data management
Data mining
Electrical surges
Fault detection
Mapping
Materials Science
Membrane Biology
Nanochemistry
Nanotechnology
Nanotechnology and Microengineering
Optimization
Original Article
title A transient fault data management algorithm for low-voltage station based on overall situation power big data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transient%20fault%20data%20management%20algorithm%20for%20low-voltage%20station%20based%20on%20overall%20situation%20power%20big%20data&rft.jtitle=Applied%20nanoscience&rft.au=Zheng,%20Sida&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=2463&rft.epage=2471&rft.pages=2463-2471&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-022-02347-3&rft_dat=%3Cproquest_cross%3E2782225247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-91516ea5e4ad512ebbe951cda53b7e6f2a02a014ad4e2966e3e22a43f3cc32223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2782225247&rft_id=info:pmid/&rfr_iscdi=true