Loading…
Cold angular rolling process as a continuous severe plastic deformation technique
Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed b...
Saved in:
Published in: | Journal of materials science 2023-03, Vol.58 (10), p.4621-4636 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823 |
container_end_page | 4636 |
container_issue | 10 |
container_start_page | 4621 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Reis, Leonardo M. Carvalho, Amanda P. Lee, Isshu Wu, Yun-Hsuan Han, Jae-Kyung Santala, Melissa K. Kawasaki, Megumi Figueiredo, Roberto B. |
description | Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique.
Graphical abstract |
doi_str_mv | 10.1007/s10853-023-08295-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2782844265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739750036</galeid><sourcerecordid>A739750036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaLguvoHPAU8eeiaz7Y5LosfCwvi1zlk22nN0k3WpBX992atIF5kMgSG92be4yF0TsmMElJcRUpKyTPCUpdMyUwdoAmVBc9ESfghmhDCWMZETo_RSYwbQogsGJ2gh4XvamxcO3Qm4OC7zroW74KvIEZs0sOVd711gx8ijvAOAfCuM7G3Fa6h8WFreusd7qF6dfZtgFN01JguwtnPP0UvN9fPi7tsdX-7XMxXWcUV67NGKsZ4U9ZVzoSo10JxI2oQZs0lNYoYujYAeZEGRja8lmrNRZ5UQ87K5JFP0cW4N4lNZ2OvN34ILp3UrChZKQTLZULNRlRrOtDWNb4PpkpVw9YmZ9DYNJ8XXBWSEJ4nwuUfwt49fPStGWLUy6fHv1g2YqvgYwzQ6F2wWxM-NSV6n4sec9EpF_2di1aJxEdSTGDXQvjV_Q_rCyPUj4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782844265</pqid></control><display><type>article</type><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><source>Springer Link</source><creator>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</creator><creatorcontrib>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</creatorcontrib><description>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08295-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy steels ; Analysis ; Boron steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cold rolling ; Copper ; Crystallography and Scattering Methods ; Equal channel angular pressing ; Feasibility studies ; Finite element method ; Materials Science ; Mathematical models ; Mechanical properties ; Metal products ; Metal sheets ; Metals & Corrosion ; Methods ; Plastic deformation ; Polymer Sciences ; Process parameters ; Solid Mechanics ; Stainless steels ; Steel alloys ; Strain rate</subject><ispartof>Journal of materials science, 2023-03, Vol.58 (10), p.4621-4636</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</citedby><cites>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</cites><orcidid>0000-0003-0028-3007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reis, Leonardo M.</creatorcontrib><creatorcontrib>Carvalho, Amanda P.</creatorcontrib><creatorcontrib>Lee, Isshu</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Han, Jae-Kyung</creatorcontrib><creatorcontrib>Santala, Melissa K.</creatorcontrib><creatorcontrib>Kawasaki, Megumi</creatorcontrib><creatorcontrib>Figueiredo, Roberto B.</creatorcontrib><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique.
Graphical abstract</description><subject>Alloy steels</subject><subject>Analysis</subject><subject>Boron steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cold rolling</subject><subject>Copper</subject><subject>Crystallography and Scattering Methods</subject><subject>Equal channel angular pressing</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Metal products</subject><subject>Metal sheets</subject><subject>Metals & Corrosion</subject><subject>Methods</subject><subject>Plastic deformation</subject><subject>Polymer Sciences</subject><subject>Process parameters</subject><subject>Solid Mechanics</subject><subject>Stainless steels</subject><subject>Steel alloys</subject><subject>Strain rate</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQDaLguvoHPAU8eeiaz7Y5LosfCwvi1zlk22nN0k3WpBX992atIF5kMgSG92be4yF0TsmMElJcRUpKyTPCUpdMyUwdoAmVBc9ESfghmhDCWMZETo_RSYwbQogsGJ2gh4XvamxcO3Qm4OC7zroW74KvIEZs0sOVd711gx8ijvAOAfCuM7G3Fa6h8WFreusd7qF6dfZtgFN01JguwtnPP0UvN9fPi7tsdX-7XMxXWcUV67NGKsZ4U9ZVzoSo10JxI2oQZs0lNYoYujYAeZEGRja8lmrNRZ5UQ87K5JFP0cW4N4lNZ2OvN34ILp3UrChZKQTLZULNRlRrOtDWNb4PpkpVw9YmZ9DYNJ8XXBWSEJ4nwuUfwt49fPStGWLUy6fHv1g2YqvgYwzQ6F2wWxM-NSV6n4sec9EpF_2di1aJxEdSTGDXQvjV_Q_rCyPUj4s</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Reis, Leonardo M.</creator><creator>Carvalho, Amanda P.</creator><creator>Lee, Isshu</creator><creator>Wu, Yun-Hsuan</creator><creator>Han, Jae-Kyung</creator><creator>Santala, Melissa K.</creator><creator>Kawasaki, Megumi</creator><creator>Figueiredo, Roberto B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0028-3007</orcidid></search><sort><creationdate>20230301</creationdate><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><author>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloy steels</topic><topic>Analysis</topic><topic>Boron steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cold rolling</topic><topic>Copper</topic><topic>Crystallography and Scattering Methods</topic><topic>Equal channel angular pressing</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Metal products</topic><topic>Metal sheets</topic><topic>Metals & Corrosion</topic><topic>Methods</topic><topic>Plastic deformation</topic><topic>Polymer Sciences</topic><topic>Process parameters</topic><topic>Solid Mechanics</topic><topic>Stainless steels</topic><topic>Steel alloys</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Leonardo M.</creatorcontrib><creatorcontrib>Carvalho, Amanda P.</creatorcontrib><creatorcontrib>Lee, Isshu</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Han, Jae-Kyung</creatorcontrib><creatorcontrib>Santala, Melissa K.</creatorcontrib><creatorcontrib>Kawasaki, Megumi</creatorcontrib><creatorcontrib>Figueiredo, Roberto B.</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Leonardo M.</au><au>Carvalho, Amanda P.</au><au>Lee, Isshu</au><au>Wu, Yun-Hsuan</au><au>Han, Jae-Kyung</au><au>Santala, Melissa K.</au><au>Kawasaki, Megumi</au><au>Figueiredo, Roberto B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold angular rolling process as a continuous severe plastic deformation technique</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>58</volume><issue>10</issue><spage>4621</spage><epage>4636</epage><pages>4621-4636</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08295-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0028-3007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-03, Vol.58 (10), p.4621-4636 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2782844265 |
source | Springer Link |
subjects | Alloy steels Analysis Boron steel Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Cold rolling Copper Crystallography and Scattering Methods Equal channel angular pressing Feasibility studies Finite element method Materials Science Mathematical models Mechanical properties Metal products Metal sheets Metals & Corrosion Methods Plastic deformation Polymer Sciences Process parameters Solid Mechanics Stainless steels Steel alloys Strain rate |
title | Cold angular rolling process as a continuous severe plastic deformation technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20angular%20rolling%20process%20as%20a%20continuous%20severe%20plastic%20deformation%20technique&rft.jtitle=Journal%20of%20materials%20science&rft.au=Reis,%20Leonardo%20M.&rft.date=2023-03-01&rft.volume=58&rft.issue=10&rft.spage=4621&rft.epage=4636&rft.pages=4621-4636&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08295-9&rft_dat=%3Cgale_proqu%3EA739750036%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2782844265&rft_id=info:pmid/&rft_galeid=A739750036&rfr_iscdi=true |