Loading…

Cold angular rolling process as a continuous severe plastic deformation technique

Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2023-03, Vol.58 (10), p.4621-4636
Main Authors: Reis, Leonardo M., Carvalho, Amanda P., Lee, Isshu, Wu, Yun-Hsuan, Han, Jae-Kyung, Santala, Melissa K., Kawasaki, Megumi, Figueiredo, Roberto B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823
cites cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823
container_end_page 4636
container_issue 10
container_start_page 4621
container_title Journal of materials science
container_volume 58
creator Reis, Leonardo M.
Carvalho, Amanda P.
Lee, Isshu
Wu, Yun-Hsuan
Han, Jae-Kyung
Santala, Melissa K.
Kawasaki, Megumi
Figueiredo, Roberto B.
description Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique. Graphical abstract
doi_str_mv 10.1007/s10853-023-08295-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2782844265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739750036</galeid><sourcerecordid>A739750036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaLguvoHPAU8eeiaz7Y5LosfCwvi1zlk22nN0k3WpBX992atIF5kMgSG92be4yF0TsmMElJcRUpKyTPCUpdMyUwdoAmVBc9ESfghmhDCWMZETo_RSYwbQogsGJ2gh4XvamxcO3Qm4OC7zroW74KvIEZs0sOVd711gx8ijvAOAfCuM7G3Fa6h8WFreusd7qF6dfZtgFN01JguwtnPP0UvN9fPi7tsdX-7XMxXWcUV67NGKsZ4U9ZVzoSo10JxI2oQZs0lNYoYujYAeZEGRja8lmrNRZ5UQ87K5JFP0cW4N4lNZ2OvN34ILp3UrChZKQTLZULNRlRrOtDWNb4PpkpVw9YmZ9DYNJ8XXBWSEJ4nwuUfwt49fPStGWLUy6fHv1g2YqvgYwzQ6F2wWxM-NSV6n4sec9EpF_2di1aJxEdSTGDXQvjV_Q_rCyPUj4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782844265</pqid></control><display><type>article</type><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><source>Springer Link</source><creator>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</creator><creatorcontrib>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</creatorcontrib><description>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08295-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy steels ; Analysis ; Boron steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cold rolling ; Copper ; Crystallography and Scattering Methods ; Equal channel angular pressing ; Feasibility studies ; Finite element method ; Materials Science ; Mathematical models ; Mechanical properties ; Metal products ; Metal sheets ; Metals &amp; Corrosion ; Methods ; Plastic deformation ; Polymer Sciences ; Process parameters ; Solid Mechanics ; Stainless steels ; Steel alloys ; Strain rate</subject><ispartof>Journal of materials science, 2023-03, Vol.58 (10), p.4621-4636</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</citedby><cites>FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</cites><orcidid>0000-0003-0028-3007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reis, Leonardo M.</creatorcontrib><creatorcontrib>Carvalho, Amanda P.</creatorcontrib><creatorcontrib>Lee, Isshu</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Han, Jae-Kyung</creatorcontrib><creatorcontrib>Santala, Melissa K.</creatorcontrib><creatorcontrib>Kawasaki, Megumi</creatorcontrib><creatorcontrib>Figueiredo, Roberto B.</creatorcontrib><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique. Graphical abstract</description><subject>Alloy steels</subject><subject>Analysis</subject><subject>Boron steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cold rolling</subject><subject>Copper</subject><subject>Crystallography and Scattering Methods</subject><subject>Equal channel angular pressing</subject><subject>Feasibility studies</subject><subject>Finite element method</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Metal products</subject><subject>Metal sheets</subject><subject>Metals &amp; Corrosion</subject><subject>Methods</subject><subject>Plastic deformation</subject><subject>Polymer Sciences</subject><subject>Process parameters</subject><subject>Solid Mechanics</subject><subject>Stainless steels</subject><subject>Steel alloys</subject><subject>Strain rate</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LxDAQDaLguvoHPAU8eeiaz7Y5LosfCwvi1zlk22nN0k3WpBX992atIF5kMgSG92be4yF0TsmMElJcRUpKyTPCUpdMyUwdoAmVBc9ESfghmhDCWMZETo_RSYwbQogsGJ2gh4XvamxcO3Qm4OC7zroW74KvIEZs0sOVd711gx8ijvAOAfCuM7G3Fa6h8WFreusd7qF6dfZtgFN01JguwtnPP0UvN9fPi7tsdX-7XMxXWcUV67NGKsZ4U9ZVzoSo10JxI2oQZs0lNYoYujYAeZEGRja8lmrNRZ5UQ87K5JFP0cW4N4lNZ2OvN34ILp3UrChZKQTLZULNRlRrOtDWNb4PpkpVw9YmZ9DYNJ8XXBWSEJ4nwuUfwt49fPStGWLUy6fHv1g2YqvgYwzQ6F2wWxM-NSV6n4sec9EpF_2di1aJxEdSTGDXQvjV_Q_rCyPUj4s</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Reis, Leonardo M.</creator><creator>Carvalho, Amanda P.</creator><creator>Lee, Isshu</creator><creator>Wu, Yun-Hsuan</creator><creator>Han, Jae-Kyung</creator><creator>Santala, Melissa K.</creator><creator>Kawasaki, Megumi</creator><creator>Figueiredo, Roberto B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0028-3007</orcidid></search><sort><creationdate>20230301</creationdate><title>Cold angular rolling process as a continuous severe plastic deformation technique</title><author>Reis, Leonardo M. ; Carvalho, Amanda P. ; Lee, Isshu ; Wu, Yun-Hsuan ; Han, Jae-Kyung ; Santala, Melissa K. ; Kawasaki, Megumi ; Figueiredo, Roberto B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloy steels</topic><topic>Analysis</topic><topic>Boron steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cold rolling</topic><topic>Copper</topic><topic>Crystallography and Scattering Methods</topic><topic>Equal channel angular pressing</topic><topic>Feasibility studies</topic><topic>Finite element method</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Metal products</topic><topic>Metal sheets</topic><topic>Metals &amp; Corrosion</topic><topic>Methods</topic><topic>Plastic deformation</topic><topic>Polymer Sciences</topic><topic>Process parameters</topic><topic>Solid Mechanics</topic><topic>Stainless steels</topic><topic>Steel alloys</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Leonardo M.</creatorcontrib><creatorcontrib>Carvalho, Amanda P.</creatorcontrib><creatorcontrib>Lee, Isshu</creatorcontrib><creatorcontrib>Wu, Yun-Hsuan</creatorcontrib><creatorcontrib>Han, Jae-Kyung</creatorcontrib><creatorcontrib>Santala, Melissa K.</creatorcontrib><creatorcontrib>Kawasaki, Megumi</creatorcontrib><creatorcontrib>Figueiredo, Roberto B.</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Leonardo M.</au><au>Carvalho, Amanda P.</au><au>Lee, Isshu</au><au>Wu, Yun-Hsuan</au><au>Han, Jae-Kyung</au><au>Santala, Melissa K.</au><au>Kawasaki, Megumi</au><au>Figueiredo, Roberto B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold angular rolling process as a continuous severe plastic deformation technique</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>58</volume><issue>10</issue><spage>4621</spage><epage>4636</epage><pages>4621-4636</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Cold angular rolling process (CARP) has emerged as a potential continuous severe plastic deformation technique enabling the processing of bulk metal sheets with improved mechanical properties. The CARP technique involves a combination of cold rolling of a sheet by a single rotation roller followed by equal-channel angular pressing of the sheet passing through a bent channel. The present work uses finite element method (FEM) to model CARP by considering processing conditions, including different friction values and processing velocities for different copper and stainless steel alloys. The simulations reveal the influence of these processing parameters on distributions of strain, strain rate, stress (in both the metal sheet and the CARP tool), temperature, and torque requirements through one pass of CARP on the metal sheets. The modeling results are validated by the experimental characterization of the hardness distribution and microstructure after CARP on a copper sheet. The results from FEM are used to estimate the energy incorporated into different metal alloys at various processing conditions. Finally, this study discusses the feasibility of scaling up the CARP technique. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08295-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0028-3007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-03, Vol.58 (10), p.4621-4636
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2782844265
source Springer Link
subjects Alloy steels
Analysis
Boron steel
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cold rolling
Copper
Crystallography and Scattering Methods
Equal channel angular pressing
Feasibility studies
Finite element method
Materials Science
Mathematical models
Mechanical properties
Metal products
Metal sheets
Metals & Corrosion
Methods
Plastic deformation
Polymer Sciences
Process parameters
Solid Mechanics
Stainless steels
Steel alloys
Strain rate
title Cold angular rolling process as a continuous severe plastic deformation technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20angular%20rolling%20process%20as%20a%20continuous%20severe%20plastic%20deformation%20technique&rft.jtitle=Journal%20of%20materials%20science&rft.au=Reis,%20Leonardo%20M.&rft.date=2023-03-01&rft.volume=58&rft.issue=10&rft.spage=4621&rft.epage=4636&rft.pages=4621-4636&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08295-9&rft_dat=%3Cgale_proqu%3EA739750036%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f59223f8dc6244db493a4de4ab351a90a1baee674aba5f3d59b346057e6280823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2782844265&rft_id=info:pmid/&rft_galeid=A739750036&rfr_iscdi=true