Loading…
Temperature-induced inconsistency in the pressure sensitivity of polymer-diaphragm-based FP pressure sensors
Fiber optic Fabry-Perot Interferometer benefits many requirements in pressure sensing. The variation of pressure sensitivity of the polymer-diaphragm-based Fabry-Perot pressure sensor with temperature is studied by investigating the thermal effect of the cavity air and the diaphragm separately. FP c...
Saved in:
Published in: | Optical materials express 2023-03, Vol.13 (3), p.687 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fiber optic Fabry-Perot Interferometer benefits many requirements in pressure sensing. The variation of pressure sensitivity of the polymer-diaphragm-based Fabry-Perot pressure sensor with temperature is studied by investigating the thermal effect of the cavity air and the diaphragm separately. FP cavity vacuum treatment and multi-curvature diaphragm simulation and experimental studies are conducted. Experimental results show that the sensor pressure sensitivity decreases with increasing temperature by 0.46nm/(kPa·°C). The diaphragm’s thermal effect is the leading cause of temperature-induced inconsistency in pressure sensitivity, accounting for 0.43nm/(kPa·°C). |
---|---|
ISSN: | 2159-3930 2159-3930 |
DOI: | 10.1364/OME.473026 |